1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "execution_subgraph.h"
#include <algorithm>
#include <unordered_set>
#include "android-base/macros.h"
#include "base/arena_allocator.h"
#include "base/arena_bit_vector.h"
#include "base/globals.h"
#include "base/scoped_arena_allocator.h"
#include "nodes.h"
namespace art HIDDEN {
ExecutionSubgraph::ExecutionSubgraph(HGraph* graph, ScopedArenaAllocator* allocator)
: graph_(graph),
allocator_(allocator),
allowed_successors_(graph_->GetBlocks().size(),
~(std::bitset<kMaxFilterableSuccessors> {}),
allocator_->Adapter(kArenaAllocLSA)),
unreachable_blocks_(
allocator_, graph_->GetBlocks().size(), /*expandable=*/ false, kArenaAllocLSA),
valid_(true),
needs_prune_(false),
finalized_(false) {
if (valid_) {
DCHECK(std::all_of(graph->GetBlocks().begin(), graph->GetBlocks().end(), [](HBasicBlock* it) {
return it == nullptr || it->GetSuccessors().size() <= kMaxFilterableSuccessors;
}));
}
}
void ExecutionSubgraph::RemoveBlock(const HBasicBlock* to_remove) {
if (!valid_) {
return;
}
uint32_t id = to_remove->GetBlockId();
if (unreachable_blocks_.IsBitSet(id)) {
if (kIsDebugBuild) {
// This isn't really needed but it's good to have this so it functions as
// a DCHECK that we always call Prune after removing any block.
needs_prune_ = true;
}
return;
}
unreachable_blocks_.SetBit(id);
for (HBasicBlock* pred : to_remove->GetPredecessors()) {
std::bitset<kMaxFilterableSuccessors> allowed_successors {};
// ZipCount iterates over both the successors and the index of them at the same time.
for (auto [succ, i] : ZipCount(MakeIterationRange(pred->GetSuccessors()))) {
if (succ != to_remove) {
allowed_successors.set(i);
}
}
LimitBlockSuccessors(pred, allowed_successors);
}
}
// Removes sink nodes.
void ExecutionSubgraph::Prune() {
if (UNLIKELY(!valid_)) {
return;
}
needs_prune_ = false;
// This is the record of the edges that were both (1) explored and (2) reached
// the exit node.
{
// Allocator for temporary values.
ScopedArenaAllocator temporaries(graph_->GetArenaStack());
ScopedArenaVector<std::bitset<kMaxFilterableSuccessors>> results(
graph_->GetBlocks().size(), temporaries.Adapter(kArenaAllocLSA));
unreachable_blocks_.ClearAllBits();
// Fills up the 'results' map with what we need to add to update
// allowed_successors in order to prune sink nodes.
bool start_reaches_end = false;
// This is basically a DFS of the graph with some edges skipped.
{
const size_t num_blocks = graph_->GetBlocks().size();
constexpr ssize_t kUnvisitedSuccIdx = -1;
ArenaBitVector visiting(&temporaries, num_blocks, false, kArenaAllocLSA);
// How many of the successors of each block we have already examined. This
// has three states.
// (1) kUnvisitedSuccIdx: we have not examined any edges,
// (2) 0 <= val < # of successors: we have examined 'val' successors/are
// currently examining successors_[val],
// (3) kMaxFilterableSuccessors: We have examined all of the successors of
// the block (the 'result' is final).
ScopedArenaVector<ssize_t> last_succ_seen(
num_blocks, kUnvisitedSuccIdx, temporaries.Adapter(kArenaAllocLSA));
// A stack of which blocks we are visiting in this DFS traversal. Does not
// include the current-block. Used with last_succ_seen to figure out which
// bits to set if we find a path to the end/loop.
ScopedArenaVector<uint32_t> current_path(temporaries.Adapter(kArenaAllocLSA));
// Just ensure we have enough space. The allocator will be cleared shortly
// anyway so this is fast.
current_path.reserve(num_blocks);
// Current block we are examining. Modified only by 'push_block' and 'pop_block'
const HBasicBlock* cur_block = graph_->GetEntryBlock();
// Used to note a recur where we will start iterating on 'blk' and save
// where we are. We must 'continue' immediately after this.
auto push_block = [&](const HBasicBlock* blk) {
DCHECK(std::find(current_path.cbegin(), current_path.cend(), cur_block->GetBlockId()) ==
current_path.end());
if (kIsDebugBuild) {
std::for_each(current_path.cbegin(), current_path.cend(), [&](auto id) {
DCHECK_GT(last_succ_seen[id], kUnvisitedSuccIdx) << id;
DCHECK_LT(last_succ_seen[id], static_cast<ssize_t>(kMaxFilterableSuccessors)) << id;
});
}
current_path.push_back(cur_block->GetBlockId());
visiting.SetBit(cur_block->GetBlockId());
cur_block = blk;
};
// Used to note that we have fully explored a block and should return back
// up. Sets cur_block appropriately. We must 'continue' immediately after
// calling this.
auto pop_block = [&]() {
if (UNLIKELY(current_path.empty())) {
// Should only happen if entry-blocks successors are exhausted.
DCHECK_GE(last_succ_seen[graph_->GetEntryBlock()->GetBlockId()],
static_cast<ssize_t>(graph_->GetEntryBlock()->GetSuccessors().size()));
cur_block = nullptr;
} else {
const HBasicBlock* last = graph_->GetBlocks()[current_path.back()];
visiting.ClearBit(current_path.back());
current_path.pop_back();
cur_block = last;
}
};
// Mark the current path as a path to the end. This is in contrast to paths
// that end in (eg) removed blocks.
auto propagate_true = [&]() {
for (uint32_t id : current_path) {
DCHECK_GT(last_succ_seen[id], kUnvisitedSuccIdx);
DCHECK_LT(last_succ_seen[id], static_cast<ssize_t>(kMaxFilterableSuccessors));
results[id].set(last_succ_seen[id]);
}
};
ssize_t num_entry_succ = graph_->GetEntryBlock()->GetSuccessors().size();
// As long as the entry-block has not explored all successors we still have
// work to do.
const uint32_t entry_block_id = graph_->GetEntryBlock()->GetBlockId();
while (num_entry_succ > last_succ_seen[entry_block_id]) {
DCHECK(cur_block != nullptr);
uint32_t id = cur_block->GetBlockId();
DCHECK((current_path.empty() && cur_block == graph_->GetEntryBlock()) ||
current_path.front() == graph_->GetEntryBlock()->GetBlockId())
<< "current path size: " << current_path.size()
<< " cur_block id: " << cur_block->GetBlockId() << " entry id "
<< graph_->GetEntryBlock()->GetBlockId();
if (visiting.IsBitSet(id)) {
// TODO We should support infinite loops as well.
start_reaches_end = false;
break;
}
std::bitset<kMaxFilterableSuccessors>& result = results[id];
if (cur_block == graph_->GetExitBlock()) {
start_reaches_end = true;
propagate_true();
pop_block();
continue;
} else if (last_succ_seen[id] == kMaxFilterableSuccessors) {
// Already fully explored.
if (result.any()) {
propagate_true();
}
pop_block();
continue;
}
// NB This is a pointer. Modifications modify the last_succ_seen.
ssize_t* cur_succ = &last_succ_seen[id];
std::bitset<kMaxFilterableSuccessors> succ_bitmap = GetAllowedSuccessors(cur_block);
// Get next successor allowed.
while (++(*cur_succ) < static_cast<ssize_t>(kMaxFilterableSuccessors) &&
!succ_bitmap.test(*cur_succ)) {
DCHECK_GE(*cur_succ, 0);
}
if (*cur_succ >= static_cast<ssize_t>(cur_block->GetSuccessors().size())) {
// No more successors. Mark that we've checked everything. Later visits
// to this node can use the existing data.
DCHECK_LE(*cur_succ, static_cast<ssize_t>(kMaxFilterableSuccessors));
*cur_succ = kMaxFilterableSuccessors;
pop_block();
continue;
}
const HBasicBlock* nxt = cur_block->GetSuccessors()[*cur_succ];
DCHECK(nxt != nullptr) << "id: " << *cur_succ
<< " max: " << cur_block->GetSuccessors().size();
if (visiting.IsBitSet(nxt->GetBlockId())) {
// This is a loop. Mark it and continue on. Mark allowed-successor on
// this block's results as well.
result.set(*cur_succ);
propagate_true();
} else {
// Not a loop yet. Recur.
push_block(nxt);
}
}
}
// If we can't reach the end then there is no path through the graph without
// hitting excluded blocks
if (UNLIKELY(!start_reaches_end)) {
valid_ = false;
return;
}
// Mark blocks we didn't see in the ReachesEnd flood-fill
for (const HBasicBlock* blk : graph_->GetBlocks()) {
if (blk != nullptr &&
results[blk->GetBlockId()].none() &&
blk != graph_->GetExitBlock() &&
blk != graph_->GetEntryBlock()) {
// We never visited this block, must be unreachable.
unreachable_blocks_.SetBit(blk->GetBlockId());
}
}
// write the new data.
memcpy(allowed_successors_.data(),
results.data(),
results.size() * sizeof(std::bitset<kMaxFilterableSuccessors>));
}
RecalculateExcludedCohort();
}
void ExecutionSubgraph::RemoveConcavity() {
if (UNLIKELY(!valid_)) {
return;
}
DCHECK(!needs_prune_);
for (const HBasicBlock* blk : graph_->GetBlocks()) {
if (blk == nullptr || unreachable_blocks_.IsBitSet(blk->GetBlockId())) {
continue;
}
uint32_t blkid = blk->GetBlockId();
if (std::any_of(unreachable_blocks_.Indexes().begin(),
unreachable_blocks_.Indexes().end(),
[&](uint32_t skipped) { return graph_->PathBetween(skipped, blkid); }) &&
std::any_of(unreachable_blocks_.Indexes().begin(),
unreachable_blocks_.Indexes().end(),
[&](uint32_t skipped) { return graph_->PathBetween(blkid, skipped); })) {
RemoveBlock(blk);
}
}
Prune();
}
void ExecutionSubgraph::RecalculateExcludedCohort() {
DCHECK(!needs_prune_);
excluded_list_.emplace(allocator_->Adapter(kArenaAllocLSA));
ScopedArenaVector<ExcludedCohort>& res = excluded_list_.value();
// Make a copy of unreachable_blocks_;
ArenaBitVector unreachable(allocator_, graph_->GetBlocks().size(), false, kArenaAllocLSA);
unreachable.Copy(&unreachable_blocks_);
// Split cohorts with union-find
while (unreachable.IsAnyBitSet()) {
res.emplace_back(allocator_, graph_);
ExcludedCohort& cohort = res.back();
// We don't allocate except for the queue beyond here so create another arena to save memory.
ScopedArenaAllocator alloc(graph_->GetArenaStack());
ScopedArenaQueue<const HBasicBlock*> worklist(alloc.Adapter(kArenaAllocLSA));
// Select an arbitrary node
const HBasicBlock* first = graph_->GetBlocks()[unreachable.GetHighestBitSet()];
worklist.push(first);
do {
// Flood-fill both forwards and backwards.
const HBasicBlock* cur = worklist.front();
worklist.pop();
if (!unreachable.IsBitSet(cur->GetBlockId())) {
// Already visited or reachable somewhere else.
continue;
}
unreachable.ClearBit(cur->GetBlockId());
cohort.blocks_.SetBit(cur->GetBlockId());
// don't bother filtering here, it's done next go-around
for (const HBasicBlock* pred : cur->GetPredecessors()) {
worklist.push(pred);
}
for (const HBasicBlock* succ : cur->GetSuccessors()) {
worklist.push(succ);
}
} while (!worklist.empty());
}
// Figure out entry & exit nodes.
for (ExcludedCohort& cohort : res) {
DCHECK(cohort.blocks_.IsAnyBitSet());
auto is_external = [&](const HBasicBlock* ext) -> bool {
return !cohort.blocks_.IsBitSet(ext->GetBlockId());
};
for (const HBasicBlock* blk : cohort.Blocks()) {
const auto& preds = blk->GetPredecessors();
const auto& succs = blk->GetSuccessors();
if (std::any_of(preds.cbegin(), preds.cend(), is_external)) {
cohort.entry_blocks_.SetBit(blk->GetBlockId());
}
if (std::any_of(succs.cbegin(), succs.cend(), is_external)) {
cohort.exit_blocks_.SetBit(blk->GetBlockId());
}
}
}
}
std::ostream& operator<<(std::ostream& os, const ExecutionSubgraph::ExcludedCohort& ex) {
ex.Dump(os);
return os;
}
void ExecutionSubgraph::ExcludedCohort::Dump(std::ostream& os) const {
auto dump = [&](BitVecBlockRange arr) {
os << "[";
bool first = true;
for (const HBasicBlock* b : arr) {
if (!first) {
os << ", ";
}
first = false;
os << b->GetBlockId();
}
os << "]";
};
auto dump_blocks = [&]() {
os << "[";
bool first = true;
for (const HBasicBlock* b : Blocks()) {
if (!entry_blocks_.IsBitSet(b->GetBlockId()) && !exit_blocks_.IsBitSet(b->GetBlockId())) {
if (!first) {
os << ", ";
}
first = false;
os << b->GetBlockId();
}
}
os << "]";
};
os << "{ entry: ";
dump(EntryBlocks());
os << ", interior: ";
dump_blocks();
os << ", exit: ";
dump(ExitBlocks());
os << "}";
}
} // namespace art
|