File: gvn.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (584 lines) | stat: -rw-r--r-- 21,664 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "gvn.h"

#include "base/arena_bit_vector.h"
#include "base/bit_vector-inl.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/utils.h"
#include "side_effects_analysis.h"

namespace art HIDDEN {

/**
 * A ValueSet holds instructions that can replace other instructions. It is updated
 * through the `Add` method, and the `Kill` method. The `Kill` method removes
 * instructions that are affected by the given side effect.
 *
 * The `Lookup` method returns an equivalent instruction to the given instruction
 * if there is one in the set. In GVN, we would say those instructions have the
 * same "number".
 */
class ValueSet : public ArenaObject<kArenaAllocGvn> {
 public:
  // Constructs an empty ValueSet which owns all its buckets.
  explicit ValueSet(ScopedArenaAllocator* allocator)
      : allocator_(allocator),
        num_buckets_(kMinimumNumberOfBuckets),
        buckets_(allocator->AllocArray<Node*>(num_buckets_, kArenaAllocGvn)),
        buckets_owned_(allocator, num_buckets_, false, kArenaAllocGvn),
        num_entries_(0u) {
    DCHECK(IsPowerOfTwo(num_buckets_));
    std::fill_n(buckets_, num_buckets_, nullptr);
    buckets_owned_.SetInitialBits(num_buckets_);
  }

  // Copy constructor. Depending on the load factor, it will either make a deep
  // copy (all buckets owned) or a shallow one (buckets pointing to the parent).
  ValueSet(ScopedArenaAllocator* allocator, const ValueSet& other)
      : allocator_(allocator),
        num_buckets_(other.IdealBucketCount()),
        buckets_(allocator->AllocArray<Node*>(num_buckets_, kArenaAllocGvn)),
        buckets_owned_(allocator, num_buckets_, false, kArenaAllocGvn),
        num_entries_(0u) {
    DCHECK(IsPowerOfTwo(num_buckets_));
    PopulateFromInternal(other);
  }

  // Erases all values in this set and populates it with values from `other`.
  void PopulateFrom(const ValueSet& other) {
    if (this == &other) {
      return;
    }
    PopulateFromInternal(other);
  }

  // Returns true if `this` has enough buckets so that if `other` is copied into
  // it, the load factor will not cross the upper threshold.
  // If `exact_match` is set, true is returned only if `this` has the ideal
  // number of buckets. Larger number of buckets is allowed otherwise.
  bool CanHoldCopyOf(const ValueSet& other, bool exact_match) {
    if (exact_match) {
      return other.IdealBucketCount() == num_buckets_;
    } else {
      return other.IdealBucketCount() <= num_buckets_;
    }
  }

  // Adds an instruction in the set.
  void Add(HInstruction* instruction) {
    DCHECK(Lookup(instruction) == nullptr);
    size_t hash_code = HashCode(instruction);
    size_t index = BucketIndex(hash_code);

    if (!buckets_owned_.IsBitSet(index)) {
      CloneBucket(index);
    }
    buckets_[index] = new (allocator_) Node(instruction, hash_code, buckets_[index]);
    ++num_entries_;
  }

  // If in the set, returns an equivalent instruction to the given instruction.
  // Returns null otherwise.
  HInstruction* Lookup(HInstruction* instruction) const {
    size_t hash_code = HashCode(instruction);
    size_t index = BucketIndex(hash_code);

    for (Node* node = buckets_[index]; node != nullptr; node = node->GetNext()) {
      if (node->GetHashCode() == hash_code) {
        HInstruction* existing = node->GetInstruction();
        if (existing->Equals(instruction)) {
          return existing;
        }
      }
    }
    return nullptr;
  }

  // Returns whether instruction is in the set.
  bool Contains(HInstruction* instruction) const {
    size_t hash_code = HashCode(instruction);
    size_t index = BucketIndex(hash_code);

    for (Node* node = buckets_[index]; node != nullptr; node = node->GetNext()) {
      if (node->GetInstruction() == instruction) {
        return true;
      }
    }
    return false;
  }

  // Removes all instructions in the set affected by the given side effects.
  void Kill(SideEffects side_effects) {
    DeleteAllImpureWhich([side_effects](Node* node) {
      return node->GetSideEffects().MayDependOn(side_effects);
    });
  }

  void Clear() {
    num_entries_ = 0;
    for (size_t i = 0; i < num_buckets_; ++i) {
      buckets_[i] = nullptr;
    }
    buckets_owned_.SetInitialBits(num_buckets_);
  }

  // Updates this set by intersecting with instructions in a predecessor's set.
  void IntersectWith(ValueSet* predecessor) {
    if (IsEmpty()) {
      return;
    } else if (predecessor->IsEmpty()) {
      Clear();
    } else {
      // Pure instructions do not need to be tested because only impure
      // instructions can be killed.
      DeleteAllImpureWhich([predecessor](Node* node) {
        return !predecessor->Contains(node->GetInstruction());
      });
    }
  }

  bool IsEmpty() const { return num_entries_ == 0; }
  size_t GetNumberOfEntries() const { return num_entries_; }

 private:
  // Copies all entries from `other` to `this`.
  void PopulateFromInternal(const ValueSet& other) {
    DCHECK_NE(this, &other);
    DCHECK_GE(num_buckets_, other.IdealBucketCount());

    if (num_buckets_ == other.num_buckets_) {
      // Hash table remains the same size. We copy the bucket pointers and leave
      // all buckets_owned_ bits false.
      buckets_owned_.ClearAllBits();
      memcpy(buckets_, other.buckets_, num_buckets_ * sizeof(Node*));
    } else {
      // Hash table size changes. We copy and rehash all entries, and set all
      // buckets_owned_ bits to true.
      std::fill_n(buckets_, num_buckets_, nullptr);
      for (size_t i = 0; i < other.num_buckets_; ++i) {
        for (Node* node = other.buckets_[i]; node != nullptr; node = node->GetNext()) {
          size_t new_index = BucketIndex(node->GetHashCode());
          buckets_[new_index] = node->Dup(allocator_, buckets_[new_index]);
        }
      }
      buckets_owned_.SetInitialBits(num_buckets_);
    }

    num_entries_ = other.num_entries_;
  }

  class Node : public ArenaObject<kArenaAllocGvn> {
   public:
    Node(HInstruction* instruction, size_t hash_code, Node* next)
        : instruction_(instruction), hash_code_(hash_code), next_(next) {}

    size_t GetHashCode() const { return hash_code_; }
    HInstruction* GetInstruction() const { return instruction_; }
    Node* GetNext() const { return next_; }
    void SetNext(Node* node) { next_ = node; }

    Node* Dup(ScopedArenaAllocator* allocator, Node* new_next = nullptr) {
      return new (allocator) Node(instruction_, hash_code_, new_next);
    }

    SideEffects GetSideEffects() const {
      // Deoptimize is a weird instruction since it's predicated and
      // never-return. Its side-effects are to prevent the splitting of dex
      // instructions across it (which could cause inconsistencies once we begin
      // interpreting again). In the context of GVN the 'perform-deopt' branch is not
      // relevant and we only need to care about the no-op case, in which case there are
      // no side-effects. By doing this we are able to eliminate redundant (i.e.
      // dominated deopts with GVNd conditions) deoptimizations.
      if (instruction_->IsDeoptimize()) {
        return SideEffects::None();
      } else {
        return instruction_->GetSideEffects();
      }
    }

   private:
    HInstruction* const instruction_;
    const size_t hash_code_;
    Node* next_;

    DISALLOW_COPY_AND_ASSIGN(Node);
  };

  // Creates our own copy of a bucket that is currently pointing to a parent.
  // This algorithm can be called while iterating over the bucket because it
  // preserves the order of entries in the bucket and will return the clone of
  // the given 'iterator'.
  Node* CloneBucket(size_t index, Node* iterator = nullptr) {
    DCHECK(!buckets_owned_.IsBitSet(index));
    Node* clone_current = nullptr;
    Node* clone_previous = nullptr;
    Node* clone_iterator = nullptr;
    for (Node* node = buckets_[index]; node != nullptr; node = node->GetNext()) {
      clone_current = node->Dup(allocator_, nullptr);
      if (node == iterator) {
        clone_iterator = clone_current;
      }
      if (clone_previous == nullptr) {
        buckets_[index] = clone_current;
      } else {
        clone_previous->SetNext(clone_current);
      }
      clone_previous = clone_current;
    }
    buckets_owned_.SetBit(index);
    return clone_iterator;
  }

  // Iterates over buckets with impure instructions (even indices) and deletes
  // the ones on which 'cond' returns true.
  template<typename Functor>
  void DeleteAllImpureWhich(Functor cond) {
    for (size_t i = 0; i < num_buckets_; i += 2) {
      Node* node = buckets_[i];
      Node* previous = nullptr;

      if (node == nullptr) {
        continue;
      }

      if (!buckets_owned_.IsBitSet(i)) {
        // Bucket is not owned but maybe we won't need to change it at all.
        // Iterate as long as the entries don't satisfy 'cond'.
        while (node != nullptr) {
          if (cond(node)) {
            // We do need to delete an entry but we do not own the bucket.
            // Clone the bucket, make sure 'previous' and 'node' point to
            // the cloned entries and break.
            previous = CloneBucket(i, previous);
            node = (previous == nullptr) ? buckets_[i] : previous->GetNext();
            break;
          }
          previous = node;
          node = node->GetNext();
        }
      }

      // By this point we either own the bucket and can start deleting entries,
      // or we do not own it but no entries matched 'cond'.
      DCHECK(buckets_owned_.IsBitSet(i) || node == nullptr);

      // We iterate over the remainder of entries and delete those that match
      // the given condition.
      while (node != nullptr) {
        Node* next = node->GetNext();
        if (cond(node)) {
          if (previous == nullptr) {
            buckets_[i] = next;
          } else {
            previous->SetNext(next);
          }
        } else {
          previous = node;
        }
        node = next;
      }
    }
  }

  // Computes a bucket count such that the load factor is reasonable.
  // This is estimated as (num_entries_ * 1.5) and rounded up to nearest pow2.
  size_t IdealBucketCount() const {
    size_t bucket_count = RoundUpToPowerOfTwo(num_entries_ + (num_entries_ >> 1));
    if (bucket_count > kMinimumNumberOfBuckets) {
      return bucket_count;
    } else {
      return kMinimumNumberOfBuckets;
    }
  }

  // Generates a hash code for an instruction.
  size_t HashCode(HInstruction* instruction) const {
    size_t hash_code = instruction->ComputeHashCode();
    // Pure instructions are put into odd buckets to speed up deletion. Note that in the
    // case of irreducible loops, we don't put pure instructions in odd buckets, as we
    // need to delete them when entering the loop.
    // ClinitCheck is treated as a pure instruction since it's only executed
    // once.
    bool pure = !instruction->GetSideEffects().HasDependencies() ||
                instruction->IsClinitCheck();
    if (!pure || instruction->GetBlock()->GetGraph()->HasIrreducibleLoops()) {
      return (hash_code << 1) | 0;
    } else {
      return (hash_code << 1) | 1;
    }
  }

  // Converts a hash code to a bucket index.
  size_t BucketIndex(size_t hash_code) const {
    return hash_code & (num_buckets_ - 1);
  }

  ScopedArenaAllocator* const allocator_;

  // The internal bucket implementation of the set.
  size_t const num_buckets_;
  Node** const buckets_;

  // Flags specifying which buckets were copied into the set from its parent.
  // If a flag is not set, the corresponding bucket points to entries in the
  // parent and must be cloned prior to making changes.
  ArenaBitVector buckets_owned_;

  // The number of entries in the set.
  size_t num_entries_;

  static constexpr size_t kMinimumNumberOfBuckets = 8;

  DISALLOW_COPY_AND_ASSIGN(ValueSet);
};

/**
 * Optimization phase that removes redundant instruction.
 */
class GlobalValueNumberer : public ValueObject {
 public:
  GlobalValueNumberer(HGraph* graph,
                      const SideEffectsAnalysis& side_effects)
      : graph_(graph),
        allocator_(graph->GetArenaStack()),
        side_effects_(side_effects),
        sets_(graph->GetBlocks().size(), nullptr, allocator_.Adapter(kArenaAllocGvn)),
        visited_blocks_(
            &allocator_, graph->GetBlocks().size(), /* expandable= */ false, kArenaAllocGvn) {
    visited_blocks_.ClearAllBits();
  }

  bool Run();

 private:
  // Per-block GVN. Will also update the ValueSet of the dominated and
  // successor blocks.
  void VisitBasicBlock(HBasicBlock* block);

  HGraph* graph_;
  ScopedArenaAllocator allocator_;
  const SideEffectsAnalysis& side_effects_;

  ValueSet* FindSetFor(HBasicBlock* block) const {
    ValueSet* result = sets_[block->GetBlockId()];
    DCHECK(result != nullptr) << "Could not find set for block B" << block->GetBlockId();
    return result;
  }

  void AbandonSetFor(HBasicBlock* block) {
    DCHECK(sets_[block->GetBlockId()] != nullptr)
        << "Block B" << block->GetBlockId() << " expected to have a set";
    sets_[block->GetBlockId()] = nullptr;
  }

  // Returns false if the GlobalValueNumberer has already visited all blocks
  // which may reference `block`.
  bool WillBeReferencedAgain(HBasicBlock* block) const;

  // Iterates over visited blocks and finds one which has a ValueSet such that:
  // (a) it will not be referenced in the future, and
  // (b) it can hold a copy of `reference_set` with a reasonable load factor.
  HBasicBlock* FindVisitedBlockWithRecyclableSet(HBasicBlock* block,
                                                 const ValueSet& reference_set) const;

  // ValueSet for blocks. Initially null, but for an individual block they
  // are allocated and populated by the dominator, and updated by all blocks
  // in the path from the dominator to the block.
  ScopedArenaVector<ValueSet*> sets_;

  // BitVector which serves as a fast-access map from block id to
  // visited/unvisited Boolean.
  ArenaBitVector visited_blocks_;

  DISALLOW_COPY_AND_ASSIGN(GlobalValueNumberer);
};

bool GlobalValueNumberer::Run() {
  DCHECK(side_effects_.HasRun());
  sets_[graph_->GetEntryBlock()->GetBlockId()] = new (&allocator_) ValueSet(&allocator_);

  // Use the reverse post order to ensure the non back-edge predecessors of a block are
  // visited before the block itself.
  for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    VisitBasicBlock(block);
  }
  return true;
}

void GlobalValueNumberer::VisitBasicBlock(HBasicBlock* block) {
  ValueSet* set = nullptr;

  const ArenaVector<HBasicBlock*>& predecessors = block->GetPredecessors();
  if (predecessors.size() == 0 || predecessors[0]->IsEntryBlock()) {
    // The entry block should only accumulate constant instructions, and
    // the builder puts constants only in the entry block.
    // Therefore, there is no need to propagate the value set to the next block.
    set = new (&allocator_) ValueSet(&allocator_);
  } else {
    HBasicBlock* dominator = block->GetDominator();
    ValueSet* dominator_set = FindSetFor(dominator);

    if (dominator->GetSuccessors().size() == 1) {
      // `block` is a direct successor of its dominator. No need to clone the
      // dominator's set, `block` can take over its ownership including its buckets.
      DCHECK_EQ(dominator->GetSingleSuccessor(), block);
      AbandonSetFor(dominator);
      set = dominator_set;
    } else {
      // Try to find a basic block which will never be referenced again and whose
      // ValueSet can therefore be recycled. We will need to copy `dominator_set`
      // into the recycled set, so we pass `dominator_set` as a reference for size.
      HBasicBlock* recyclable = FindVisitedBlockWithRecyclableSet(block, *dominator_set);
      if (recyclable == nullptr) {
        // No block with a suitable ValueSet found. Allocate a new one and
        // copy `dominator_set` into it.
        set = new (&allocator_) ValueSet(&allocator_, *dominator_set);
      } else {
        // Block with a recyclable ValueSet found. Clone `dominator_set` into it.
        set = FindSetFor(recyclable);
        AbandonSetFor(recyclable);
        set->PopulateFrom(*dominator_set);
      }
    }

    if (!set->IsEmpty()) {
      if (block->IsLoopHeader()) {
        if (block->GetLoopInformation()->ContainsIrreducibleLoop()) {
          // To satisfy our linear scan algorithm, no instruction should flow in an irreducible
          // loop header. We clear the set at entry of irreducible loops and any loop containing
          // an irreducible loop, as in both cases, GVN can extend the liveness of an instruction
          // across the irreducible loop.
          // Note that, if we're not compiling OSR, we could still do GVN and introduce
          // phis at irreducible loop headers. We decided it was not worth the complexity.
          set->Clear();
        } else {
          DCHECK(!block->GetLoopInformation()->IsIrreducible());
          DCHECK_EQ(block->GetDominator(), block->GetLoopInformation()->GetPreHeader());
          set->Kill(side_effects_.GetLoopEffects(block));
        }
      } else if (predecessors.size() > 1) {
        for (HBasicBlock* predecessor : predecessors) {
          set->IntersectWith(FindSetFor(predecessor));
          if (set->IsEmpty()) {
            break;
          }
        }
      }
    }
  }

  sets_[block->GetBlockId()] = set;

  HInstruction* current = block->GetFirstInstruction();
  while (current != nullptr) {
    // Save the next instruction in case `current` is removed from the graph.
    HInstruction* next = current->GetNext();
    // Do not kill the set with the side effects of the instruction just now: if
    // the instruction is GVN'ed, we don't need to kill.
    //
    // BoundType is a special case example of an instruction which shouldn't be moved but can be
    // GVN'ed.
    //
    // Deoptimize is a special case since even though we don't want to move it we can still remove
    // it for GVN.
    if (current->CanBeMoved() || current->IsBoundType() || current->IsDeoptimize()) {
      if (current->IsBinaryOperation() && current->AsBinaryOperation()->IsCommutative()) {
        // For commutative ops, (x op y) will be treated the same as (y op x)
        // after fixed ordering.
        current->AsBinaryOperation()->OrderInputs();
      }
      HInstruction* existing = set->Lookup(current);
      if (existing != nullptr) {
        // This replacement doesn't make more OrderInputs() necessary since
        // current is either used by an instruction that it dominates,
        // which hasn't been visited yet due to the order we visit instructions.
        // Or current is used by a phi, and we don't do OrderInputs() on a phi anyway.
        current->ReplaceWith(existing);
        current->GetBlock()->RemoveInstruction(current);
      } else {
        set->Kill(current->GetSideEffects());
        set->Add(current);
      }
    } else {
      set->Kill(current->GetSideEffects());
    }
    current = next;
  }

  visited_blocks_.SetBit(block->GetBlockId());
}

bool GlobalValueNumberer::WillBeReferencedAgain(HBasicBlock* block) const {
  DCHECK(visited_blocks_.IsBitSet(block->GetBlockId()));

  for (const HBasicBlock* dominated_block : block->GetDominatedBlocks()) {
    if (!visited_blocks_.IsBitSet(dominated_block->GetBlockId())) {
      return true;
    }
  }

  for (const HBasicBlock* successor : block->GetSuccessors()) {
    if (!visited_blocks_.IsBitSet(successor->GetBlockId())) {
      return true;
    }
  }

  return false;
}

HBasicBlock* GlobalValueNumberer::FindVisitedBlockWithRecyclableSet(
    HBasicBlock* block, const ValueSet& reference_set) const {
  HBasicBlock* secondary_match = nullptr;

  for (size_t block_id : visited_blocks_.Indexes()) {
    ValueSet* current_set = sets_[block_id];
    if (current_set == nullptr) {
      // Set was already recycled.
      continue;
    }

    HBasicBlock* current_block = block->GetGraph()->GetBlocks()[block_id];

    // We test if `current_set` has enough buckets to store a copy of
    // `reference_set` with a reasonable load factor. If we find a set whose
    // number of buckets matches perfectly, we return right away. If we find one
    // that is larger, we return it if no perfectly-matching set is found.
    // Note that we defer testing WillBeReferencedAgain until all other criteria
    // have been satisfied because it might be expensive.
    if (current_set->CanHoldCopyOf(reference_set, /* exact_match= */ true)) {
      if (!WillBeReferencedAgain(current_block)) {
        return current_block;
      }
    } else if (secondary_match == nullptr &&
               current_set->CanHoldCopyOf(reference_set, /* exact_match= */ false)) {
      if (!WillBeReferencedAgain(current_block)) {
        secondary_match = current_block;
      }
    }
  }

  return secondary_match;
}

bool GVNOptimization::Run() {
  GlobalValueNumberer gvn(graph_, side_effects_);
  return gvn.Run();
}

}  // namespace art