1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "induction_var_analysis.h"
#include "base/scoped_arena_containers.h"
#include "induction_var_range.h"
namespace art HIDDEN {
/**
* Returns true if the from/to types denote a narrowing, integral conversion (precision loss).
*/
static bool IsNarrowingIntegralConversion(DataType::Type from, DataType::Type to) {
switch (from) {
case DataType::Type::kInt64:
return to == DataType::Type::kUint8 ||
to == DataType::Type::kInt8 ||
to == DataType::Type::kUint16 ||
to == DataType::Type::kInt16 ||
to == DataType::Type::kInt32;
case DataType::Type::kInt32:
return to == DataType::Type::kUint8 ||
to == DataType::Type::kInt8 ||
to == DataType::Type::kUint16 ||
to == DataType::Type::kInt16;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
return to == DataType::Type::kUint8 || to == DataType::Type::kInt8;
default:
return false;
}
}
/**
* Returns result of implicit widening type conversion done in HIR.
*/
static DataType::Type ImplicitConversion(DataType::Type type) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
return DataType::Type::kInt32;
default:
return type;
}
}
/**
* Returns true if loop is guarded by "a cmp b" on entry.
*/
static bool IsGuardedBy(const HLoopInformation* loop,
IfCondition cmp,
HInstruction* a,
HInstruction* b) {
// Chase back through straightline code to the first potential
// block that has a control dependence.
// guard: if (x) bypass
// |
// entry: straightline code
// |
// preheader
// |
// header
HBasicBlock* guard = loop->GetPreHeader();
HBasicBlock* entry = loop->GetHeader();
while (guard->GetPredecessors().size() == 1 &&
guard->GetSuccessors().size() == 1) {
entry = guard;
guard = guard->GetSinglePredecessor();
}
// Find guard.
HInstruction* control = guard->GetLastInstruction();
if (!control->IsIf()) {
return false;
}
HIf* ifs = control->AsIf();
HInstruction* if_expr = ifs->InputAt(0);
if (if_expr->IsCondition()) {
IfCondition other_cmp = ifs->IfTrueSuccessor() == entry
? if_expr->AsCondition()->GetCondition()
: if_expr->AsCondition()->GetOppositeCondition();
if (if_expr->InputAt(0) == a && if_expr->InputAt(1) == b) {
return cmp == other_cmp;
} else if (if_expr->InputAt(1) == a && if_expr->InputAt(0) == b) {
switch (cmp) {
case kCondLT: return other_cmp == kCondGT;
case kCondLE: return other_cmp == kCondGE;
case kCondGT: return other_cmp == kCondLT;
case kCondGE: return other_cmp == kCondLE;
default: LOG(FATAL) << "unexpected cmp: " << cmp;
}
}
}
return false;
}
/* Finds first loop header phi use. */
HInstruction* FindFirstLoopHeaderPhiUse(const HLoopInformation* loop, HInstruction* instruction) {
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
if (use.GetUser()->GetBlock() == loop->GetHeader() &&
use.GetUser()->IsPhi() &&
use.GetUser()->InputAt(1) == instruction) {
return use.GetUser();
}
}
return nullptr;
}
/**
* Relinks the Phi structure after break-loop rewriting.
*/
static bool FixOutsideUse(const HLoopInformation* loop,
HInstruction* instruction,
HInstruction* replacement,
bool rewrite) {
// Deal with regular uses.
const HUseList<HInstruction*>& uses = instruction->GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end; ) {
HInstruction* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment prior to potential removal
if (user->GetBlock()->GetLoopInformation() != loop) {
if (replacement == nullptr) {
return false;
} else if (rewrite) {
user->ReplaceInput(replacement, index);
}
}
}
// Deal with environment uses.
const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
HEnvironment* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment prior to potential removal
if (user->GetHolder()->GetBlock()->GetLoopInformation() != loop) {
if (replacement == nullptr) {
return false;
} else if (rewrite) {
user->ReplaceInput(replacement, index);
}
}
}
return true;
}
/**
* Test and rewrite the loop body of a break-loop. Returns true on success.
*/
static bool RewriteBreakLoopBody(const HLoopInformation* loop,
HBasicBlock* body,
HInstruction* cond,
HInstruction* index,
HInstruction* upper,
bool rewrite) {
// Deal with Phis. Outside use prohibited, except for index (which gets exit value).
for (HInstructionIterator it(loop->GetHeader()->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* exit_value = it.Current() == index ? upper : nullptr;
if (!FixOutsideUse(loop, it.Current(), exit_value, rewrite)) {
return false;
}
}
// Deal with other statements in header.
for (HInstruction* m = cond->GetPrevious(); m && !m->IsSuspendCheck();) {
HInstruction* p = m->GetPrevious();
if (rewrite) {
m->MoveBefore(body->GetFirstInstruction(), false);
}
if (!FixOutsideUse(loop, m, FindFirstLoopHeaderPhiUse(loop, m), rewrite)) {
return false;
}
m = p;
}
return true;
}
//
// Class members.
//
struct HInductionVarAnalysis::NodeInfo {
explicit NodeInfo(uint32_t d) : depth(d), done(false) {}
uint32_t depth;
bool done;
};
struct HInductionVarAnalysis::StackEntry {
StackEntry(HInstruction* insn, NodeInfo* info, size_t link = std::numeric_limits<size_t>::max())
: instruction(insn),
node_info(info),
user_link(link),
num_visited_inputs(0u),
low_depth(info->depth) {}
HInstruction* instruction;
NodeInfo* node_info;
size_t user_link; // Stack index of the user that is visiting this input.
size_t num_visited_inputs;
size_t low_depth;
};
HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph,
OptimizingCompilerStats* stats,
const char* name)
: HOptimization(graph, name, stats),
induction_(std::less<const HLoopInformation*>(),
graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)),
cycles_(std::less<HPhi*>(), graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)) {
}
bool HInductionVarAnalysis::Run() {
// Detects sequence variables (generalized induction variables) during an outer to inner
// traversal of all loops using Gerlek's algorithm. The order is important to enable
// range analysis on outer loop while visiting inner loops.
if (IsPathologicalCase()) {
MaybeRecordStat(stats_, MethodCompilationStat::kNotVarAnalyzedPathological);
return false;
}
for (HBasicBlock* graph_block : graph_->GetReversePostOrder()) {
// Don't analyze irreducible loops.
if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) {
VisitLoop(graph_block->GetLoopInformation());
}
}
return !induction_.empty();
}
void HInductionVarAnalysis::VisitLoop(const HLoopInformation* loop) {
ScopedArenaAllocator local_allocator(graph_->GetArenaStack());
ScopedArenaSafeMap<HInstruction*, NodeInfo> visited_instructions(
std::less<HInstruction*>(), local_allocator.Adapter(kArenaAllocInductionVarAnalysis));
// Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
// algorithm. Due to the descendant-first nature, classification happens "on-demand".
size_t global_depth = 0;
for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
HBasicBlock* loop_block = it_loop.Current();
DCHECK(loop_block->IsInLoop());
if (loop_block->GetLoopInformation() != loop) {
continue; // Inner loops visited later.
}
// Visit phi-operations and instructions.
for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
global_depth = TryVisitNodes(loop, it.Current(), global_depth, &visited_instructions);
}
for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
global_depth = TryVisitNodes(loop, it.Current(), global_depth, &visited_instructions);
}
}
// Determine the loop's trip-count.
VisitControl(loop);
}
size_t HInductionVarAnalysis::TryVisitNodes(
const HLoopInformation* loop,
HInstruction* start_instruction,
size_t global_depth,
/*inout*/ ScopedArenaSafeMap<HInstruction*, NodeInfo>* visited_instructions) {
// This is recursion-free version of the SCC search algorithm. We have limited stack space,
// so recursion with the depth dependent on the input is undesirable as such depth is unlimited.
auto [it, inserted] =
visited_instructions->insert(std::make_pair(start_instruction, NodeInfo(global_depth + 1u)));
if (!inserted) {
return global_depth;
}
NodeInfo* start_info = &it->second;
++global_depth;
DCHECK_EQ(global_depth, start_info->depth);
ScopedArenaVector<StackEntry> stack(visited_instructions->get_allocator());
stack.push_back({start_instruction, start_info});
size_t current_entry = 0u;
while (!stack.empty()) {
StackEntry& entry = stack[current_entry];
// Look for unvisited inputs (also known as "descentants").
bool visit_input = false;
auto inputs = entry.instruction->GetInputs();
while (entry.num_visited_inputs != inputs.size()) {
HInstruction* input = inputs[entry.num_visited_inputs];
++entry.num_visited_inputs;
// If the definition is either outside the loop (loop invariant entry value)
// or assigned in inner loop (inner exit value), the input is not visited.
if (input->GetBlock()->GetLoopInformation() != loop) {
continue;
}
// Try visiting the input. If already visited, update `entry.low_depth`.
auto [input_it, input_inserted] =
visited_instructions->insert(std::make_pair(input, NodeInfo(global_depth + 1u)));
NodeInfo* input_info = &input_it->second;
if (input_inserted) {
// Push the input on the `stack` and visit it now.
++global_depth;
DCHECK_EQ(global_depth, input_info->depth);
stack.push_back({input, input_info, current_entry});
current_entry = stack.size() - 1u;
visit_input = true;
break;
} else if (!input_info->done && input_info->depth < entry.low_depth) {
entry.low_depth = input_it->second.depth;
}
continue;
}
if (visit_input) {
continue; // Process the new top of the stack.
}
// All inputs of the current node have been visited.
// Check if we have found an input below this entry on the stack.
DCHECK(!entry.node_info->done);
size_t previous_entry = entry.user_link;
if (entry.node_info->depth > entry.low_depth) {
DCHECK_LT(previous_entry, current_entry) << entry.node_info->depth << " " << entry.low_depth;
entry.node_info->depth = entry.low_depth;
if (stack[previous_entry].low_depth > entry.low_depth) {
stack[previous_entry].low_depth = entry.low_depth;
}
} else {
// Classify the SCC we have just found.
ArrayRef<StackEntry> stack_tail = ArrayRef<StackEntry>(stack).SubArray(current_entry);
for (StackEntry& tail_entry : stack_tail) {
tail_entry.node_info->done = true;
}
if (current_entry + 1u == stack.size() && !entry.instruction->IsLoopHeaderPhi()) {
ClassifyTrivial(loop, entry.instruction);
} else {
ClassifyNonTrivial(loop, ArrayRef<const StackEntry>(stack_tail));
}
stack.erase(stack.begin() + current_entry, stack.end());
}
current_entry = previous_entry;
}
return global_depth;
}
/**
* Since graph traversal may enter a SCC at any position, an initial representation may be rotated,
* along dependences, viz. any of (a, b, c, d), (d, a, b, c) (c, d, a, b), (b, c, d, a) assuming
* a chain of dependences (mutual independent items may occur in arbitrary order). For proper
* classification, the lexicographically first loop-phi is rotated to the front. We do that
* as we extract the SCC instructions.
*/
void HInductionVarAnalysis::ExtractScc(ArrayRef<const StackEntry> stack_tail,
ScopedArenaVector<HInstruction*>* scc) {
// Find very first loop-phi.
HInstruction* phi = nullptr;
size_t split_pos = 0;
const size_t size = stack_tail.size();
for (size_t i = 0; i != size; ++i) {
const StackEntry& entry = stack_tail[i];
HInstruction* instruction = entry.instruction;
if (instruction->IsLoopHeaderPhi()) {
// All loop Phis in SCC come from the same loop header.
HBasicBlock* block = instruction->GetBlock();
DCHECK(block->GetLoopInformation()->GetHeader() == block);
DCHECK(phi == nullptr || phi->GetBlock() == block);
if (phi == nullptr || block->GetPhis().FoundBefore(instruction, phi)) {
phi = instruction;
split_pos = i + 1u;
}
}
}
// Extract SCC in two chunks.
DCHECK(scc->empty());
scc->reserve(size);
for (const StackEntry& entry : ReverseRange(stack_tail.SubArray(/*pos=*/ 0u, split_pos))) {
scc->push_back(entry.instruction);
}
for (const StackEntry& entry : ReverseRange(stack_tail.SubArray(/*pos=*/ split_pos))) {
scc->push_back(entry.instruction);
}
DCHECK_EQ(scc->size(), stack_tail.size());
}
void HInductionVarAnalysis::ClassifyTrivial(const HLoopInformation* loop,
HInstruction* instruction) {
const HBasicBlock* context = instruction->GetBlock();
DataType::Type type = instruction->GetType();
InductionInfo* info = nullptr;
if (instruction->IsPhi()) {
info = TransferPhi(loop, instruction, /*input_index*/ 0, /*adjust_input_size*/ 0);
} else if (instruction->IsAdd()) {
info = TransferAddSub(context,
loop,
LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)),
kAdd,
type);
} else if (instruction->IsSub()) {
info = TransferAddSub(context,
loop,
LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)),
kSub,
type);
} else if (instruction->IsNeg()) {
info = TransferNeg(context, loop, LookupInfo(loop, instruction->InputAt(0)), type);
} else if (instruction->IsMul()) {
info = TransferMul(context,
loop,
LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)),
type);
} else if (instruction->IsShl()) {
HInstruction* mulc = GetShiftConstant(loop, instruction, /*initial*/ nullptr);
if (mulc != nullptr) {
info = TransferMul(context,
loop,
LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, mulc),
type);
}
} else if (instruction->IsSelect()) {
info = TransferPhi(loop, instruction, /*input_index*/ 0, /*adjust_input_size*/ 1);
} else if (instruction->IsTypeConversion()) {
info = TransferConversion(LookupInfo(loop, instruction->InputAt(0)),
instruction->AsTypeConversion()->GetInputType(),
instruction->AsTypeConversion()->GetResultType());
} else if (instruction->IsBoundsCheck()) {
info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through.
}
// Successfully classified?
if (info != nullptr) {
AssignInfo(loop, instruction, info);
}
}
void HInductionVarAnalysis::ClassifyNonTrivial(const HLoopInformation* loop,
ArrayRef<const StackEntry> stack_tail) {
const size_t size = stack_tail.size();
DCHECK_GE(size, 1u);
DataType::Type type = stack_tail.back().instruction->GetType();
ScopedArenaAllocator local_allocator(graph_->GetArenaStack());
ScopedArenaVector<HInstruction*> scc(local_allocator.Adapter(kArenaAllocInductionVarAnalysis));
ExtractScc(ArrayRef<const StackEntry>(stack_tail), &scc);
// Analyze from loop-phi onwards.
HInstruction* phi = scc[0];
if (!phi->IsLoopHeaderPhi()) {
return;
}
// External link should be loop invariant.
InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
if (initial == nullptr || initial->induction_class != kInvariant) {
return;
}
// Store interesting cycle in each loop phi.
for (size_t i = 0; i < size; i++) {
if (scc[i]->IsLoopHeaderPhi()) {
AssignCycle(scc[i]->AsPhi(), ArrayRef<HInstruction* const>(scc));
}
}
// Singleton is wrap-around induction if all internal links have the same meaning.
if (size == 1) {
InductionInfo* update = TransferPhi(loop, phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
if (update != nullptr) {
AssignInfo(loop, phi, CreateInduction(kWrapAround,
kNop,
initial,
update,
/*fetch*/ nullptr,
type));
}
return;
}
// Inspect remainder of the cycle that resides in `scc`. The `cycle` mapping assigns
// temporary meaning to its nodes, seeded from the phi instruction and back.
ScopedArenaSafeMap<HInstruction*, InductionInfo*> cycle(
std::less<HInstruction*>(), local_allocator.Adapter(kArenaAllocInductionVarAnalysis));
for (size_t i = 1; i < size; i++) {
HInstruction* instruction = scc[i];
InductionInfo* update = nullptr;
if (instruction->IsPhi()) {
update = SolvePhiAllInputs(loop, phi, instruction, cycle, type);
} else if (instruction->IsAdd()) {
update = SolveAddSub(loop,
phi,
instruction,
instruction->InputAt(0),
instruction->InputAt(1),
kAdd,
cycle,
type);
} else if (instruction->IsSub()) {
update = SolveAddSub(loop,
phi,
instruction,
instruction->InputAt(0),
instruction->InputAt(1),
kSub,
cycle,
type);
} else if (instruction->IsMul()) {
update = SolveOp(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kMul, type);
} else if (instruction->IsDiv()) {
update = SolveOp(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kDiv, type);
} else if (instruction->IsRem()) {
update = SolveOp(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kRem, type);
} else if (instruction->IsShl()) {
HInstruction* mulc = GetShiftConstant(loop, instruction, /*initial*/ nullptr);
if (mulc != nullptr) {
update = SolveOp(loop, phi, instruction, instruction->InputAt(0), mulc, kMul, type);
}
} else if (instruction->IsShr() || instruction->IsUShr()) {
HInstruction* divc = GetShiftConstant(loop, instruction, initial);
if (divc != nullptr) {
update = SolveOp(loop, phi, instruction, instruction->InputAt(0), divc, kDiv, type);
}
} else if (instruction->IsXor()) {
update = SolveOp(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kXor, type);
} else if (instruction->IsEqual()) {
update = SolveTest(loop, phi, instruction, /*opposite_value=*/ 0, type);
} else if (instruction->IsNotEqual()) {
update = SolveTest(loop, phi, instruction, /*opposite_value=*/ 1, type);
} else if (instruction->IsSelect()) {
// Select acts like Phi.
update = SolvePhi(instruction, /*input_index=*/ 0, /*adjust_input_size=*/ 1, cycle);
} else if (instruction->IsTypeConversion()) {
update = SolveConversion(loop, phi, instruction->AsTypeConversion(), cycle, &type);
}
if (update == nullptr) {
return;
}
cycle.Put(instruction, update);
}
// Success if all internal links received the same temporary meaning.
InductionInfo* induction = SolvePhi(phi, /*input_index=*/ 1, /*adjust_input_size=*/ 0, cycle);
if (induction != nullptr) {
switch (induction->induction_class) {
case kInvariant:
// Construct combined stride of the linear induction.
induction = CreateInduction(kLinear, kNop, induction, initial, /*fetch*/ nullptr, type);
FALLTHROUGH_INTENDED;
case kPolynomial:
case kGeometric:
case kWrapAround:
// Classify first phi and then the rest of the cycle "on-demand".
// Statements are scanned in order.
AssignInfo(loop, phi, induction);
for (size_t i = 1; i < size; i++) {
ClassifyTrivial(loop, scc[i]);
}
break;
case kPeriodic:
// Classify all elements in the cycle with the found periodic induction while
// rotating each first element to the end. Lastly, phi is classified.
// Statements are scanned in reverse order.
for (size_t i = size - 1; i >= 1; i--) {
AssignInfo(loop, scc[i], induction);
induction = RotatePeriodicInduction(induction->op_b, induction->op_a, type);
}
AssignInfo(loop, phi, induction);
break;
default:
break;
}
}
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
InductionInfo* induction,
InductionInfo* last,
DataType::Type type) {
// Rotates a periodic induction of the form
// (a, b, c, d, e)
// into
// (b, c, d, e, a)
// in preparation of assigning this to the previous variable in the sequence.
if (induction->induction_class == kInvariant) {
return CreateInduction(kPeriodic,
kNop,
induction,
last,
/*fetch*/ nullptr,
type);
}
return CreateInduction(kPeriodic,
kNop,
induction->op_a,
RotatePeriodicInduction(induction->op_b, last, type),
/*fetch*/ nullptr,
type);
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(
const HLoopInformation* loop,
HInstruction* phi,
size_t input_index,
size_t adjust_input_size) {
// Match all phi inputs from input_index onwards exactly.
HInputsRef inputs = phi->GetInputs();
DCHECK_LT(input_index, inputs.size());
InductionInfo* a = LookupInfo(loop, inputs[input_index]);
for (size_t i = input_index + 1, n = inputs.size() - adjust_input_size; i < n; i++) {
InductionInfo* b = LookupInfo(loop, inputs[i]);
if (!InductionEqual(a, b)) {
return nullptr;
}
}
return a;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(
const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* a,
InductionInfo* b,
InductionOp op,
DataType::Type type) {
// Transfer over an addition or subtraction: any invariant, linear, polynomial, geometric,
// wrap-around, or periodic can be combined with an invariant to yield a similar result.
// Two linear or two polynomial inputs can be combined too. Other combinations fail.
if (a != nullptr && b != nullptr) {
if (IsNarrowingLinear(a) || IsNarrowingLinear(b)) {
return nullptr; // no transfer
} else if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return CreateInvariantOp(context, loop, op, a, b); // direct invariant
} else if ((a->induction_class == kLinear && b->induction_class == kLinear) ||
(a->induction_class == kPolynomial && b->induction_class == kPolynomial)) {
// Rule induc(a, b) + induc(a', b') -> induc(a + a', b + b').
InductionInfo* new_a = TransferAddSub(context, loop, a->op_a, b->op_a, op, type);
InductionInfo* new_b = TransferAddSub(context, loop, a->op_b, b->op_b, op, type);
if (new_a != nullptr && new_b != nullptr) {
return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type);
}
} else if (a->induction_class == kInvariant) {
// Rule a + induc(a', b') -> induc(a', a + b') or induc(a + a', a + b').
InductionInfo* new_a = b->op_a;
InductionInfo* new_b = TransferAddSub(context, loop, a, b->op_b, op, type);
if (b->induction_class == kWrapAround || b->induction_class == kPeriodic) {
new_a = TransferAddSub(context, loop, a, new_a, op, type);
} else if (op == kSub) { // Negation required.
new_a = TransferNeg(context, loop, new_a, type);
}
if (new_a != nullptr && new_b != nullptr) {
return CreateInduction(b->induction_class, b->operation, new_a, new_b, b->fetch, type);
}
} else if (b->induction_class == kInvariant) {
// Rule induc(a, b) + b' -> induc(a, b + b') or induc(a + b', b + b').
InductionInfo* new_a = a->op_a;
InductionInfo* new_b = TransferAddSub(context, loop, a->op_b, b, op, type);
if (a->induction_class == kWrapAround || a->induction_class == kPeriodic) {
new_a = TransferAddSub(context, loop, new_a, b, op, type);
}
if (new_a != nullptr && new_b != nullptr) {
return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type);
}
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(
const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* a,
DataType::Type type) {
// Transfer over a unary negation: an invariant, linear, polynomial, geometric (mul),
// wrap-around, or periodic input yields a similar but negated induction as result.
if (a != nullptr) {
if (IsNarrowingLinear(a)) {
return nullptr; // no transfer
} else if (a->induction_class == kInvariant) {
return CreateInvariantOp(context, loop, kNeg, nullptr, a); // direct invariant
} else if (a->induction_class != kGeometric || a->operation == kMul) {
// Rule - induc(a, b) -> induc(-a, -b).
InductionInfo* new_a = TransferNeg(context, loop, a->op_a, type);
InductionInfo* new_b = TransferNeg(context, loop, a->op_b, type);
if (new_a != nullptr && new_b != nullptr) {
return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type);
}
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(
const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* a,
InductionInfo* b,
DataType::Type type) {
// Transfer over a multiplication: any invariant, linear, polynomial, geometric (mul),
// wrap-around, or periodic can be multiplied with an invariant to yield a similar
// but multiplied result. Two non-invariant inputs cannot be multiplied, however.
if (a != nullptr && b != nullptr) {
if (IsNarrowingLinear(a) || IsNarrowingLinear(b)) {
return nullptr; // no transfer
} else if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return CreateInvariantOp(context, loop, kMul, a, b); // direct invariant
} else if (a->induction_class == kInvariant && (b->induction_class != kGeometric ||
b->operation == kMul)) {
// Rule a * induc(a', b') -> induc(a * a', b * b').
InductionInfo* new_a = TransferMul(context, loop, a, b->op_a, type);
InductionInfo* new_b = TransferMul(context, loop, a, b->op_b, type);
if (new_a != nullptr && new_b != nullptr) {
return CreateInduction(b->induction_class, b->operation, new_a, new_b, b->fetch, type);
}
} else if (b->induction_class == kInvariant && (a->induction_class != kGeometric ||
a->operation == kMul)) {
// Rule induc(a, b) * b' -> induc(a * b', b * b').
InductionInfo* new_a = TransferMul(context, loop, a->op_a, b, type);
InductionInfo* new_b = TransferMul(context, loop, a->op_b, b, type);
if (new_a != nullptr && new_b != nullptr) {
return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type);
}
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferConversion(
InductionInfo* a,
DataType::Type from,
DataType::Type to) {
if (a != nullptr) {
// Allow narrowing conversion on linear induction in certain cases:
// induction is already at narrow type, or can be made narrower.
if (IsNarrowingIntegralConversion(from, to) &&
a->induction_class == kLinear &&
(a->type == to || IsNarrowingIntegralConversion(a->type, to))) {
return CreateInduction(kLinear, kNop, a->op_a, a->op_b, a->fetch, to);
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(
HInstruction* phi,
size_t input_index,
size_t adjust_input_size,
const ScopedArenaSafeMap<HInstruction*, InductionInfo*>& cycle) {
// Match all phi inputs from input_index onwards exactly.
HInputsRef inputs = phi->GetInputs();
DCHECK_LT(input_index, inputs.size());
auto ita = cycle.find(inputs[input_index]);
if (ita != cycle.end()) {
for (size_t i = input_index + 1, n = inputs.size() - adjust_input_size; i < n; i++) {
auto itb = cycle.find(inputs[i]);
if (itb == cycle.end() ||
!HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) {
return nullptr;
}
}
return ita->second;
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs(
const HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* phi,
const ScopedArenaSafeMap<HInstruction*, InductionInfo*>& cycle,
DataType::Type type) {
// Match all phi inputs.
InductionInfo* match = SolvePhi(phi, /*input_index=*/ 0, /*adjust_input_size=*/ 0, cycle);
if (match != nullptr) {
return match;
}
// Otherwise, try to solve for a periodic seeded from phi onward.
// Only tight multi-statement cycles are considered in order to
// simplify rotating the periodic during the final classification.
if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) {
InductionInfo* a = LookupInfo(loop, phi->InputAt(0));
if (a != nullptr && a->induction_class == kInvariant) {
if (phi->InputAt(1) == entry_phi) {
InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
return CreateInduction(kPeriodic, kNop, a, initial, /*fetch*/ nullptr, type);
}
InductionInfo* b = SolvePhi(phi, /*input_index=*/ 1, /*adjust_input_size=*/ 0, cycle);
if (b != nullptr && b->induction_class == kPeriodic) {
return CreateInduction(kPeriodic, kNop, a, b, /*fetch*/ nullptr, type);
}
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(
const HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
HInstruction* x,
HInstruction* y,
InductionOp op,
const ScopedArenaSafeMap<HInstruction*, InductionInfo*>& cycle,
DataType::Type type) {
const HBasicBlock* context = instruction->GetBlock();
auto main_solve_add_sub = [&]() -> HInductionVarAnalysis::InductionInfo* {
// Solve within a cycle over an addition or subtraction.
InductionInfo* b = LookupInfo(loop, y);
if (b != nullptr) {
if (b->induction_class == kInvariant) {
// Adding or subtracting an invariant value, seeded from phi,
// keeps adding to the stride of the linear induction.
if (x == entry_phi) {
return (op == kAdd) ? b : CreateInvariantOp(context, loop, kNeg, nullptr, b);
}
auto it = cycle.find(x);
if (it != cycle.end()) {
InductionInfo* a = it->second;
if (a->induction_class == kInvariant) {
return CreateInvariantOp(context, loop, op, a, b);
}
}
} else if (b->induction_class == kLinear && b->type == type) {
// Solve within a tight cycle that adds a term that is already classified as a linear
// induction for a polynomial induction k = k + i (represented as sum over linear terms).
if (x == entry_phi &&
entry_phi->InputCount() == 2 &&
instruction == entry_phi->InputAt(1)) {
InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
InductionInfo* new_a = op == kAdd ? b : TransferNeg(context, loop, b, type);
if (new_a != nullptr) {
return CreateInduction(kPolynomial, kNop, new_a, initial, /*fetch*/ nullptr, type);
}
}
}
}
return nullptr;
};
HInductionVarAnalysis::InductionInfo* result = main_solve_add_sub();
if (result == nullptr) {
// Try some alternatives before failing.
if (op == kAdd) {
// Try the other way around for an addition.
std::swap(x, y);
result = main_solve_add_sub();
} else if (op == kSub) {
// Solve within a tight cycle that is formed by exactly two instructions,
// one phi and one update, for a periodic idiom of the form k = c - k.
if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
InductionInfo* a = LookupInfo(loop, x);
if (a != nullptr && a->induction_class == kInvariant) {
InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
result = CreateInduction(kPeriodic,
kNop,
CreateInvariantOp(context, loop, kSub, a, initial),
initial,
/*fetch*/ nullptr,
type);
}
}
}
}
return result;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveOp(const HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
HInstruction* x,
HInstruction* y,
InductionOp op,
DataType::Type type) {
// Solve within a tight cycle for a binary operation k = k op c or, for some op, k = c op k.
if (entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
InductionInfo* c = nullptr;
InductionInfo* b = LookupInfo(loop, y);
if (b != nullptr && b->induction_class == kInvariant && entry_phi == x) {
c = b;
} else if (op != kDiv && op != kRem) {
InductionInfo* a = LookupInfo(loop, x);
if (a != nullptr && a->induction_class == kInvariant && entry_phi == y) {
c = a;
}
}
// Found suitable operand left or right?
if (c != nullptr) {
const HBasicBlock* context = instruction->GetBlock();
InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
switch (op) {
case kMul:
case kDiv:
// Restrict base of geometric induction to direct fetch.
if (c->operation == kFetch) {
return CreateInduction(kGeometric,
op,
initial,
CreateConstant(0, type),
c->fetch,
type);
}
break;
case kRem:
// Idiomatic MOD wrap-around induction.
return CreateInduction(kWrapAround,
kNop,
initial,
CreateInvariantOp(context, loop, kRem, initial, c),
/*fetch*/ nullptr,
type);
case kXor:
// Idiomatic XOR periodic induction.
return CreateInduction(kPeriodic,
kNop,
CreateInvariantOp(context, loop, kXor, initial, c),
initial,
/*fetch*/ nullptr,
type);
default:
LOG(FATAL) << op;
UNREACHABLE();
}
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveTest(const HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
int64_t opposite_value,
DataType::Type type) {
// Detect hidden XOR construction in x = (x == false) or x = (x != true).
const HBasicBlock* context = instruction->GetBlock();
HInstruction* x = instruction->InputAt(0);
HInstruction* y = instruction->InputAt(1);
int64_t value = -1;
if (IsExact(context, loop, LookupInfo(loop, x), &value) && value == opposite_value) {
return SolveOp(loop, entry_phi, instruction, graph_->GetIntConstant(1), y, kXor, type);
} else if (IsExact(context, loop, LookupInfo(loop, y), &value) && value == opposite_value) {
return SolveOp(loop, entry_phi, instruction, x, graph_->GetIntConstant(1), kXor, type);
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveConversion(
const HLoopInformation* loop,
HInstruction* entry_phi,
HTypeConversion* conversion,
const ScopedArenaSafeMap<HInstruction*, InductionInfo*>& cycle,
/*inout*/ DataType::Type* type) {
DataType::Type from = conversion->GetInputType();
DataType::Type to = conversion->GetResultType();
// A narrowing conversion is allowed as *last* operation of the cycle of a linear induction
// with an initial value that fits the type, provided that the narrowest encountered type is
// recorded with the induction to account for the precision loss. The narrower induction does
// *not* transfer to any wider operations, however, since these may yield out-of-type values
if (entry_phi->InputCount() == 2 && conversion == entry_phi->InputAt(1)) {
int64_t min = DataType::MinValueOfIntegralType(to);
int64_t max = DataType::MaxValueOfIntegralType(to);
int64_t value = 0;
const HBasicBlock* context = conversion->GetBlock();
InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
if (IsNarrowingIntegralConversion(from, to) &&
IsAtLeast(context, loop, initial, &value) && value >= min &&
IsAtMost(context, loop, initial, &value) && value <= max) {
auto it = cycle.find(conversion->GetInput());
if (it != cycle.end() && it->second->induction_class == kInvariant) {
*type = to;
return it->second;
}
}
}
return nullptr;
}
//
// Loop trip count analysis methods.
//
void HInductionVarAnalysis::VisitControl(const HLoopInformation* loop) {
HInstruction* control = loop->GetHeader()->GetLastInstruction();
if (control->IsIf()) {
HIf* ifs = control->AsIf();
HBasicBlock* if_true = ifs->IfTrueSuccessor();
HBasicBlock* if_false = ifs->IfFalseSuccessor();
HInstruction* if_expr = ifs->InputAt(0);
// Determine if loop has following structure in header.
// loop-header: ....
// if (condition) goto X
if (if_expr->IsCondition()) {
HCondition* condition = if_expr->AsCondition();
const HBasicBlock* context = condition->GetBlock();
InductionInfo* a = LookupInfo(loop, condition->InputAt(0));
InductionInfo* b = LookupInfo(loop, condition->InputAt(1));
DataType::Type type = ImplicitConversion(condition->InputAt(0)->GetType());
// Determine if the loop control uses a known sequence on an if-exit (X outside) or on
// an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition().
if (a == nullptr || b == nullptr) {
return; // Loop control is not a sequence.
} else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) {
VisitCondition(context, loop, if_false, a, b, type, condition->GetOppositeCondition());
} else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) {
VisitCondition(context, loop, if_true, a, b, type, condition->GetCondition());
}
}
}
}
void HInductionVarAnalysis::VisitCondition(const HBasicBlock* context,
const HLoopInformation* loop,
HBasicBlock* body,
InductionInfo* a,
InductionInfo* b,
DataType::Type type,
IfCondition cmp) {
if (a->induction_class == kInvariant && b->induction_class == kLinear) {
// Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U).
switch (cmp) {
case kCondLT: VisitCondition(context, loop, body, b, a, type, kCondGT); break;
case kCondLE: VisitCondition(context, loop, body, b, a, type, kCondGE); break;
case kCondGT: VisitCondition(context, loop, body, b, a, type, kCondLT); break;
case kCondGE: VisitCondition(context, loop, body, b, a, type, kCondLE); break;
case kCondNE: VisitCondition(context, loop, body, b, a, type, kCondNE); break;
default: break;
}
} else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
// Analyze condition with induction at left-hand-side (e.g. i < U).
InductionInfo* lower_expr = a->op_b;
InductionInfo* upper_expr = b;
InductionInfo* stride_expr = a->op_a;
// Test for constant stride and integral condition.
int64_t stride_value = 0;
if (!IsExact(context, loop, stride_expr, &stride_value)) {
return; // unknown stride
} else if (type != DataType::Type::kInt32 && type != DataType::Type::kInt64) {
return; // not integral
}
// Since loops with a i != U condition will not be normalized by the method below, first
// try to rewrite a break-loop with terminating condition i != U into an equivalent loop
// with non-strict end condition i <= U or i >= U if such a rewriting is possible and safe.
if (cmp == kCondNE && RewriteBreakLoop(context, loop, body, stride_value, type)) {
cmp = stride_value > 0 ? kCondLE : kCondGE;
}
// If this rewriting failed, try to rewrite condition i != U into strict end condition i < U
// or i > U if this end condition is reached exactly (tested by verifying if the loop has a
// unit stride and the non-strict condition would be always taken).
if (cmp == kCondNE &&
((stride_value == +1 && IsTaken(context, loop, lower_expr, upper_expr, kCondLE)) ||
(stride_value == -1 && IsTaken(context, loop, lower_expr, upper_expr, kCondGE)))) {
cmp = stride_value > 0 ? kCondLT : kCondGT;
}
// A mismatch between the type of condition and the induction is only allowed if the,
// necessarily narrower, induction range fits the narrower control.
if (type != a->type &&
!FitsNarrowerControl(context, loop, lower_expr, upper_expr, stride_value, a->type, cmp)) {
return; // mismatched type
}
// Normalize a linear loop control with a nonzero stride:
// stride > 0, either i < U or i <= U
// stride < 0, either i > U or i >= U
if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) ||
(stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) {
VisitTripCount(context, loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp);
}
}
}
void HInductionVarAnalysis::VisitTripCount(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* lower_expr,
InductionInfo* upper_expr,
InductionInfo* stride_expr,
int64_t stride_value,
DataType::Type type,
IfCondition cmp) {
// Any loop of the general form:
//
// for (i = L; i <= U; i += S) // S > 0
// or for (i = L; i >= U; i += S) // S < 0
// .. i ..
//
// can be normalized into:
//
// for (n = 0; n < TC; n++) // where TC = (U + S - L) / S
// .. L + S * n ..
//
// taking the following into consideration:
//
// (1) Using the same precision, the TC (trip-count) expression should be interpreted as
// an unsigned entity, for example, as in the following loop that uses the full range:
// for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX
// (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in:
// for (int i = 12; i < U; i++) // TC = 0 when U <= 12
// If this cannot be determined at compile-time, the TC is only valid within the
// loop-body proper, not the loop-header unless enforced with an explicit taken-test.
// (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in:
// for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX
// If this cannot be determined at compile-time, the TC is only valid when enforced
// with an explicit finite-test.
// (4) For loops which early-exits, the TC forms an upper bound, as in:
// for (int i = 0; i < 10 && ....; i++) // TC <= 10
InductionInfo* trip_count = upper_expr;
const bool is_taken = IsTaken(context, loop, lower_expr, upper_expr, cmp);
const bool is_finite = IsFinite(context, loop, upper_expr, stride_value, type, cmp);
const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1;
if (!cancels) {
// Convert exclusive integral inequality into inclusive integral inequality,
// viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1.
if (cmp == kCondLT) {
trip_count = CreateInvariantOp(context, loop, kSub, trip_count, CreateConstant(1, type));
} else if (cmp == kCondGT) {
trip_count = CreateInvariantOp(context, loop, kAdd, trip_count, CreateConstant(1, type));
}
// Compensate for stride.
trip_count = CreateInvariantOp(context, loop, kAdd, trip_count, stride_expr);
}
trip_count = CreateInvariantOp(context, loop, kSub, trip_count, lower_expr);
trip_count = CreateInvariantOp(context, loop, kDiv, trip_count, stride_expr);
// Assign the trip-count expression to the loop control. Clients that use the information
// should be aware that the expression is only valid under the conditions listed above.
InductionOp tcKind = kTripCountInBodyUnsafe; // needs both tests
if (is_taken && is_finite) {
tcKind = kTripCountInLoop; // needs neither test
} else if (is_finite) {
tcKind = kTripCountInBody; // needs taken-test
} else if (is_taken) {
tcKind = kTripCountInLoopUnsafe; // needs finite-test
}
InductionOp op = kNop;
switch (cmp) {
case kCondLT: op = kLT; break;
case kCondLE: op = kLE; break;
case kCondGT: op = kGT; break;
case kCondGE: op = kGE; break;
default: LOG(FATAL) << "CONDITION UNREACHABLE";
}
// Associate trip count with control instruction, rather than the condition (even
// though it's its use) since former provides a convenient use-free placeholder.
HInstruction* control = loop->GetHeader()->GetLastInstruction();
InductionInfo* taken_test = CreateInvariantOp(context, loop, op, lower_expr, upper_expr);
DCHECK(control->IsIf());
AssignInfo(loop, control, CreateTripCount(tcKind, trip_count, taken_test, type));
}
bool HInductionVarAnalysis::IsTaken(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* lower_expr,
InductionInfo* upper_expr,
IfCondition cmp) {
int64_t lower_value;
int64_t upper_value;
switch (cmp) {
case kCondLT:
return IsAtMost(context, loop, lower_expr, &lower_value)
&& IsAtLeast(context, loop, upper_expr, &upper_value)
&& lower_value < upper_value;
case kCondLE:
return IsAtMost(context, loop, lower_expr, &lower_value)
&& IsAtLeast(context, loop, upper_expr, &upper_value)
&& lower_value <= upper_value;
case kCondGT:
return IsAtLeast(context, loop, lower_expr, &lower_value)
&& IsAtMost(context, loop, upper_expr, &upper_value)
&& lower_value > upper_value;
case kCondGE:
return IsAtLeast(context, loop, lower_expr, &lower_value)
&& IsAtMost(context, loop, upper_expr, &upper_value)
&& lower_value >= upper_value;
default:
LOG(FATAL) << "CONDITION UNREACHABLE";
UNREACHABLE();
}
}
bool HInductionVarAnalysis::IsFinite(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* upper_expr,
int64_t stride_value,
DataType::Type type,
IfCondition cmp) {
int64_t min = DataType::MinValueOfIntegralType(type);
int64_t max = DataType::MaxValueOfIntegralType(type);
// Some rules under which it is certain at compile-time that the loop is finite.
int64_t value;
switch (cmp) {
case kCondLT:
return stride_value == 1 ||
(IsAtMost(context, loop, upper_expr, &value) && value <= (max - stride_value + 1));
case kCondLE:
return (IsAtMost(context, loop, upper_expr, &value) && value <= (max - stride_value));
case kCondGT:
return stride_value == -1 ||
(IsAtLeast(context, loop, upper_expr, &value) && value >= (min - stride_value - 1));
case kCondGE:
return (IsAtLeast(context, loop, upper_expr, &value) && value >= (min - stride_value));
default:
LOG(FATAL) << "CONDITION UNREACHABLE";
UNREACHABLE();
}
}
bool HInductionVarAnalysis::FitsNarrowerControl(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* lower_expr,
InductionInfo* upper_expr,
int64_t stride_value,
DataType::Type type,
IfCondition cmp) {
int64_t min = DataType::MinValueOfIntegralType(type);
int64_t max = DataType::MaxValueOfIntegralType(type);
// Inclusive test need one extra.
if (stride_value != 1 && stride_value != -1) {
return false; // non-unit stride
} else if (cmp == kCondLE) {
max--;
} else if (cmp == kCondGE) {
min++;
}
// Do both bounds fit the range?
int64_t value = 0;
return IsAtLeast(context, loop, lower_expr, &value) && value >= min &&
IsAtMost(context, loop, lower_expr, &value) && value <= max &&
IsAtLeast(context, loop, upper_expr, &value) && value >= min &&
IsAtMost(context, loop, upper_expr, &value) && value <= max;
}
bool HInductionVarAnalysis::RewriteBreakLoop(const HBasicBlock* context,
const HLoopInformation* loop,
HBasicBlock* body,
int64_t stride_value,
DataType::Type type) {
// Only accept unit stride.
if (std::abs(stride_value) != 1) {
return false;
}
// Simple terminating i != U condition, used nowhere else.
HIf* ifs = loop->GetHeader()->GetLastInstruction()->AsIf();
HInstruction* cond = ifs->InputAt(0);
if (ifs->GetPrevious() != cond || !cond->HasOnlyOneNonEnvironmentUse()) {
return false;
}
int c = LookupInfo(loop, cond->InputAt(0))->induction_class == kLinear ? 0 : 1;
HInstruction* index = cond->InputAt(c);
HInstruction* upper = cond->InputAt(1 - c);
// Safe to rewrite into i <= U?
IfCondition cmp = stride_value > 0 ? kCondLE : kCondGE;
if (!index->IsPhi() ||
!IsFinite(context, loop, LookupInfo(loop, upper), stride_value, type, cmp)) {
return false;
}
// Body consists of update to index i only, used nowhere else.
if (body->GetSuccessors().size() != 1 ||
body->GetSingleSuccessor() != loop->GetHeader() ||
!body->GetPhis().IsEmpty() ||
body->GetInstructions().IsEmpty() ||
body->GetFirstInstruction() != index->InputAt(1) ||
!body->GetFirstInstruction()->HasOnlyOneNonEnvironmentUse() ||
!body->GetFirstInstruction()->GetNext()->IsGoto()) {
return false;
}
// Always taken or guarded by enclosing condition.
if (!IsTaken(context, loop, LookupInfo(loop, index)->op_b, LookupInfo(loop, upper), cmp) &&
!IsGuardedBy(loop, cmp, index->InputAt(0), upper)) {
return false;
}
// Test if break-loop body can be written, and do so on success.
if (RewriteBreakLoopBody(loop, body, cond, index, upper, /*rewrite*/ false)) {
RewriteBreakLoopBody(loop, body, cond, index, upper, /*rewrite*/ true);
} else {
return false;
}
// Rewrite condition in HIR.
if (ifs->IfTrueSuccessor() != body) {
cmp = (cmp == kCondLE) ? kCondGT : kCondLT;
}
HInstruction* rep = nullptr;
switch (cmp) {
case kCondLT: rep = new (graph_->GetAllocator()) HLessThan(index, upper); break;
case kCondGT: rep = new (graph_->GetAllocator()) HGreaterThan(index, upper); break;
case kCondLE: rep = new (graph_->GetAllocator()) HLessThanOrEqual(index, upper); break;
case kCondGE: rep = new (graph_->GetAllocator()) HGreaterThanOrEqual(index, upper); break;
default: LOG(FATAL) << cmp; UNREACHABLE();
}
loop->GetHeader()->ReplaceAndRemoveInstructionWith(cond, rep);
return true;
}
//
// Helper methods.
//
void HInductionVarAnalysis::AssignInfo(const HLoopInformation* loop,
HInstruction* instruction,
InductionInfo* info) {
auto it = induction_.find(loop);
if (it == induction_.end()) {
it = induction_.Put(loop,
ArenaSafeMap<HInstruction*, InductionInfo*>(
std::less<HInstruction*>(),
graph_->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)));
}
it->second.Put(instruction, info);
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(
const HLoopInformation* loop,
HInstruction* instruction) {
auto it = induction_.find(loop);
if (it != induction_.end()) {
auto loop_it = it->second.find(instruction);
if (loop_it != it->second.end()) {
return loop_it->second;
}
}
if (loop->IsDefinedOutOfTheLoop(instruction)) {
InductionInfo* info = CreateInvariantFetch(instruction);
AssignInfo(loop, instruction, info);
return info;
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value,
DataType::Type type) {
HInstruction* constant;
switch (type) {
case DataType::Type::kFloat64: constant = graph_->GetDoubleConstant(value); break;
case DataType::Type::kFloat32: constant = graph_->GetFloatConstant(value); break;
case DataType::Type::kInt64: constant = graph_->GetLongConstant(value); break;
default: constant = graph_->GetIntConstant(value); break;
}
return CreateInvariantFetch(constant);
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
const HBasicBlock* context,
const HLoopInformation* loop,
InductionOp op,
InductionInfo* a,
InductionInfo* b) {
// Perform some light-weight simplifications during construction of a new invariant.
// This often safes memory and yields a more concise representation of the induction.
// More exhaustive simplifications are done by later phases once induction nodes are
// translated back into HIR code (e.g. by loop optimizations or BCE).
int64_t value = -1;
if (IsExact(context, loop, a, &value)) {
if (value == 0) {
// Simplify 0 + b = b, 0 ^ b = b, 0 * b = 0.
if (op == kAdd || op == kXor) {
return b;
} else if (op == kMul) {
return a;
}
} else if (op == kMul) {
// Simplify 1 * b = b, -1 * b = -b
if (value == 1) {
return b;
} else if (value == -1) {
return CreateSimplifiedInvariant(context, loop, kNeg, nullptr, b);
}
}
}
if (IsExact(context, loop, b, &value)) {
if (value == 0) {
// Simplify a + 0 = a, a - 0 = a, a ^ 0 = a, a * 0 = 0, -0 = 0.
if (op == kAdd || op == kSub || op == kXor) {
return a;
} else if (op == kMul || op == kNeg) {
return b;
}
} else if (op == kMul || op == kDiv) {
// Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a
if (value == 1) {
return a;
} else if (value == -1) {
return CreateSimplifiedInvariant(context, loop, kNeg, nullptr, a);
}
}
} else if (b->operation == kNeg) {
// Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b.
if (op == kAdd) {
return CreateSimplifiedInvariant(context, loop, kSub, a, b->op_b);
} else if (op == kSub) {
return CreateSimplifiedInvariant(context, loop, kAdd, a, b->op_b);
} else if (op == kNeg) {
return b->op_b;
}
} else if (b->operation == kSub) {
// Simplify - (a - b) = b - a.
if (op == kNeg) {
return CreateSimplifiedInvariant(context, loop, kSub, b->op_b, b->op_a);
}
}
return new (graph_->GetAllocator()) InductionInfo(
kInvariant, op, a, b, nullptr, ImplicitConversion(b->type));
}
HInstruction* HInductionVarAnalysis::GetShiftConstant(const HLoopInformation* loop,
HInstruction* instruction,
InductionInfo* initial) {
DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
const HBasicBlock* context = instruction->GetBlock();
// Shift-rights are only the same as division for non-negative initial inputs.
// Otherwise we would round incorrectly.
if (initial != nullptr) {
int64_t value = -1;
if (!IsAtLeast(context, loop, initial, &value) || value < 0) {
return nullptr;
}
}
// Obtain the constant needed to treat shift as equivalent multiplication or division.
// This yields an existing instruction if the constant is already there. Otherwise, this
// has a side effect on the HIR. The restriction on the shift factor avoids generating a
// negative constant (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that
// generalization for shift factors outside [0,32) and [0,64) ranges is done earlier.
InductionInfo* b = LookupInfo(loop, instruction->InputAt(1));
int64_t value = -1;
if (IsExact(context, loop, b, &value)) {
DataType::Type type = instruction->InputAt(0)->GetType();
if (type == DataType::Type::kInt32 && 0 <= value && value < 31) {
return graph_->GetIntConstant(1 << value);
}
if (type == DataType::Type::kInt64 && 0 <= value && value < 63) {
return graph_->GetLongConstant(1L << value);
}
}
return nullptr;
}
void HInductionVarAnalysis::AssignCycle(HPhi* phi, ArrayRef<HInstruction* const> scc) {
ArenaSet<HInstruction*>* set = &cycles_.Put(phi, ArenaSet<HInstruction*>(
graph_->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)))->second;
for (HInstruction* i : scc) {
set->insert(i);
}
}
ArenaSet<HInstruction*>* HInductionVarAnalysis::LookupCycle(HPhi* phi) {
auto it = cycles_.find(phi);
if (it != cycles_.end()) {
return &it->second;
}
return nullptr;
}
bool HInductionVarAnalysis::IsExact(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* info,
/*out*/int64_t* value) {
InductionVarRange range(this);
return range.IsConstant(context, loop, info, InductionVarRange::kExact, value);
}
bool HInductionVarAnalysis::IsAtMost(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* info,
/*out*/int64_t* value) {
InductionVarRange range(this);
return range.IsConstant(context, loop, info, InductionVarRange::kAtMost, value);
}
bool HInductionVarAnalysis::IsAtLeast(const HBasicBlock* context,
const HLoopInformation* loop,
InductionInfo* info,
/*out*/int64_t* value) {
InductionVarRange range(this);
return range.IsConstant(context, loop, info, InductionVarRange::kAtLeast, value);
}
bool HInductionVarAnalysis::IsNarrowingLinear(InductionInfo* info) {
return info != nullptr &&
info->induction_class == kLinear &&
(info->type == DataType::Type::kUint8 ||
info->type == DataType::Type::kInt8 ||
info->type == DataType::Type::kUint16 ||
info->type == DataType::Type::kInt16 ||
(info->type == DataType::Type::kInt32 && (info->op_a->type == DataType::Type::kInt64 ||
info->op_b->type == DataType::Type::kInt64)));
}
bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
InductionInfo* info2) {
// Test structural equality only, without accounting for simplifications.
if (info1 != nullptr && info2 != nullptr) {
return
info1->induction_class == info2->induction_class &&
info1->operation == info2->operation &&
info1->fetch == info2->fetch &&
info1->type == info2->type &&
InductionEqual(info1->op_a, info2->op_a) &&
InductionEqual(info1->op_b, info2->op_b);
}
// Otherwise only two nullptrs are considered equal.
return info1 == info2;
}
std::string HInductionVarAnalysis::FetchToString(HInstruction* fetch) {
DCHECK(fetch != nullptr);
if (fetch->IsIntConstant()) {
return std::to_string(fetch->AsIntConstant()->GetValue());
} else if (fetch->IsLongConstant()) {
return std::to_string(fetch->AsLongConstant()->GetValue());
}
return std::to_string(fetch->GetId()) + ":" + fetch->DebugName();
}
std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
if (info != nullptr) {
if (info->induction_class == kInvariant) {
std::string inv = "(";
inv += InductionToString(info->op_a);
switch (info->operation) {
case kNop: inv += " @ "; break;
case kAdd: inv += " + "; break;
case kSub:
case kNeg: inv += " - "; break;
case kMul: inv += " * "; break;
case kDiv: inv += " / "; break;
case kRem: inv += " % "; break;
case kXor: inv += " ^ "; break;
case kLT: inv += " < "; break;
case kLE: inv += " <= "; break;
case kGT: inv += " > "; break;
case kGE: inv += " >= "; break;
case kFetch: inv += FetchToString(info->fetch); break;
case kTripCountInLoop: inv += " (TC-loop) "; break;
case kTripCountInBody: inv += " (TC-body) "; break;
case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break;
case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break;
}
inv += InductionToString(info->op_b);
inv += ")";
return inv;
} else {
if (info->induction_class == kLinear) {
DCHECK(info->operation == kNop);
return "(" + InductionToString(info->op_a) + " * i + " +
InductionToString(info->op_b) + "):" +
DataType::PrettyDescriptor(info->type);
} else if (info->induction_class == kPolynomial) {
DCHECK(info->operation == kNop);
return "poly(sum_lt(" + InductionToString(info->op_a) + ") + " +
InductionToString(info->op_b) + "):" +
DataType::PrettyDescriptor(info->type);
} else if (info->induction_class == kGeometric) {
DCHECK(info->operation == kMul || info->operation == kDiv);
DCHECK(info->fetch != nullptr);
return "geo(" + InductionToString(info->op_a) + " * " +
FetchToString(info->fetch) +
(info->operation == kMul ? " ^ i + " : " ^ -i + ") +
InductionToString(info->op_b) + "):" +
DataType::PrettyDescriptor(info->type);
} else if (info->induction_class == kWrapAround) {
DCHECK(info->operation == kNop);
return "wrap(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + "):" +
DataType::PrettyDescriptor(info->type);
} else if (info->induction_class == kPeriodic) {
DCHECK(info->operation == kNop);
return "periodic(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + "):" +
DataType::PrettyDescriptor(info->type);
}
}
}
return "";
}
void HInductionVarAnalysis::CalculateLoopHeaderPhisInARow(
HPhi* initial_phi,
ScopedArenaSafeMap<HPhi*, int>& cached_values,
ScopedArenaAllocator& allocator) {
DCHECK(initial_phi->IsLoopHeaderPhi());
ScopedArenaQueue<HPhi*> worklist(allocator.Adapter(kArenaAllocInductionVarAnalysis));
worklist.push(initial_phi);
// Used to check which phis are in the current chain we are checking.
ScopedArenaSet<HPhi*> phis_in_chain(allocator.Adapter(kArenaAllocInductionVarAnalysis));
while (!worklist.empty()) {
HPhi* current_phi = worklist.front();
DCHECK(current_phi->IsLoopHeaderPhi());
if (cached_values.find(current_phi) != cached_values.end()) {
// Already processed.
worklist.pop();
continue;
}
phis_in_chain.insert(current_phi);
int max_value = 0;
bool pushed_other_phis = false;
for (size_t index = 0; index < current_phi->InputCount(); index++) {
// If the input is not a loop header phi, we only have 1 (current_phi).
int current_value = 1;
if (current_phi->InputAt(index)->IsLoopHeaderPhi()) {
HPhi* loop_header_phi = current_phi->InputAt(index)->AsPhi();
auto it = cached_values.find(loop_header_phi);
if (it != cached_values.end()) {
current_value += it->second;
} else if (phis_in_chain.find(current_phi) == phis_in_chain.end()) {
// Push phis which aren't in the chain already to be processed.
pushed_other_phis = true;
worklist.push(loop_header_phi);
}
// Phis in the chain will get processed later. We keep `current_value` as 1 to avoid
// double counting `loop_header_phi`.
}
max_value = std::max(max_value, current_value);
}
if (!pushed_other_phis) {
// Only finish processing after all inputs were processed.
worklist.pop();
phis_in_chain.erase(current_phi);
cached_values.FindOrAdd(current_phi, max_value);
}
}
}
bool HInductionVarAnalysis::IsPathologicalCase() {
ScopedArenaAllocator local_allocator(graph_->GetArenaStack());
ScopedArenaSafeMap<HPhi*, int> cached_values(
std::less<HPhi*>(), local_allocator.Adapter(kArenaAllocInductionVarAnalysis));
// Due to how our induction passes work, we will take a lot of time compiling if we have several
// loop header phis in a row. If we have more than 15 different loop header phis in a row, we
// don't perform the analysis.
constexpr int kMaximumLoopHeaderPhisInARow = 15;
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
if (!block->IsLoopHeader()) {
continue;
}
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
DCHECK(it.Current()->IsLoopHeaderPhi());
HPhi* phi = it.Current()->AsPhi();
CalculateLoopHeaderPhisInARow(phi, cached_values, local_allocator);
DCHECK(cached_values.find(phi) != cached_values.end())
<< " we should have a value for Phi " << phi->GetId()
<< " in block " << phi->GetBlock()->GetBlockId();
if (cached_values.find(phi)->second > kMaximumLoopHeaderPhisInARow) {
return true;
}
}
}
return false;
}
} // namespace art
|