1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_
#define ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_
#include "base/arena_allocator.h"
#include "base/arena_bit_vector.h"
#include "base/bit_vector-inl.h"
#include "base/macros.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "escape.h"
#include "execution_subgraph.h"
#include "nodes.h"
#include "optimizing/optimizing_compiler_stats.h"
namespace art HIDDEN {
enum class LoadStoreAnalysisType {
kBasic,
kNoPredicatedInstructions,
kFull,
};
// A ReferenceInfo contains additional info about a reference such as
// whether it's a singleton, returned, etc.
class ReferenceInfo : public DeletableArenaObject<kArenaAllocLSA> {
public:
ReferenceInfo(HInstruction* reference,
ScopedArenaAllocator* allocator,
size_t pos,
LoadStoreAnalysisType elimination_type)
: reference_(reference),
position_(pos),
is_singleton_(true),
is_singleton_and_not_returned_(true),
is_singleton_and_not_deopt_visible_(true),
allocator_(allocator),
subgraph_(nullptr) {
// TODO We can do this in one pass.
// TODO NewArray is possible but will need to get a handle on how to deal with the dynamic loads
// for now just ignore it.
bool can_be_partial = elimination_type != LoadStoreAnalysisType::kBasic &&
(/* reference_->IsNewArray() || */ reference_->IsNewInstance());
if (can_be_partial) {
subgraph_.reset(
new (allocator) ExecutionSubgraph(reference->GetBlock()->GetGraph(), allocator));
CollectPartialEscapes(reference_->GetBlock()->GetGraph());
}
CalculateEscape(reference_,
nullptr,
&is_singleton_,
&is_singleton_and_not_returned_,
&is_singleton_and_not_deopt_visible_);
if (can_be_partial) {
if (elimination_type == LoadStoreAnalysisType::kNoPredicatedInstructions) {
// This is to mark writes to partially escaped values as also part of the escaped subset.
// TODO We can avoid this if we have a 'ConditionalWrite' instruction. Will require testing
// to see if the additional branches are worth it.
PrunePartialEscapeWrites();
}
DCHECK(subgraph_ != nullptr);
subgraph_->Finalize();
} else {
DCHECK(subgraph_ == nullptr);
}
}
const ExecutionSubgraph* GetNoEscapeSubgraph() const {
DCHECK(IsPartialSingleton());
return subgraph_.get();
}
HInstruction* GetReference() const {
return reference_;
}
size_t GetPosition() const {
return position_;
}
// Returns true if reference_ is the only name that can refer to its value during
// the lifetime of the method. So it's guaranteed to not have any alias in
// the method (including its callees).
bool IsSingleton() const {
return is_singleton_;
}
// This is a singleton and there are paths that don't escape the method
bool IsPartialSingleton() const {
auto ref = GetReference();
// TODO NewArray is possible but will need to get a handle on how to deal with the dynamic loads
// for now just ignore it.
return (/* ref->IsNewArray() || */ ref->IsNewInstance()) &&
subgraph_ != nullptr &&
subgraph_->IsValid();
}
// Returns true if reference_ is a singleton and not returned to the caller or
// used as an environment local of an HDeoptimize instruction.
// The allocation and stores into reference_ may be eliminated for such cases.
bool IsSingletonAndRemovable() const {
return is_singleton_and_not_returned_ && is_singleton_and_not_deopt_visible_;
}
// Returns true if reference_ is a singleton and returned to the caller or
// used as an environment local of an HDeoptimize instruction.
bool IsSingletonAndNonRemovable() const {
return is_singleton_ &&
(!is_singleton_and_not_returned_ || !is_singleton_and_not_deopt_visible_);
}
private:
void CollectPartialEscapes(HGraph* graph);
void HandleEscape(HBasicBlock* escape) {
DCHECK(subgraph_ != nullptr);
subgraph_->RemoveBlock(escape);
}
void HandleEscape(HInstruction* escape) {
HandleEscape(escape->GetBlock());
}
// Make sure we mark any writes/potential writes to heap-locations within partially
// escaped values as escaping.
void PrunePartialEscapeWrites();
HInstruction* const reference_;
const size_t position_; // position in HeapLocationCollector's ref_info_array_.
// Can only be referred to by a single name in the method.
bool is_singleton_;
// Is singleton and not returned to caller.
bool is_singleton_and_not_returned_;
// Is singleton and not used as an environment local of HDeoptimize.
bool is_singleton_and_not_deopt_visible_;
ScopedArenaAllocator* allocator_;
std::unique_ptr<ExecutionSubgraph> subgraph_;
DISALLOW_COPY_AND_ASSIGN(ReferenceInfo);
};
// A heap location is a reference-offset/index pair that a value can be loaded from
// or stored to.
class HeapLocation : public ArenaObject<kArenaAllocLSA> {
public:
static constexpr size_t kInvalidFieldOffset = -1;
// Default value for heap locations which are not vector data.
static constexpr size_t kScalar = 1;
// TODO: more fine-grained array types.
static constexpr int16_t kDeclaringClassDefIndexForArrays = -1;
HeapLocation(ReferenceInfo* ref_info,
DataType::Type type,
size_t offset,
HInstruction* index,
size_t vector_length,
int16_t declaring_class_def_index,
bool is_vec_op)
: ref_info_(ref_info),
type_(DataType::ToSigned(type)),
offset_(offset),
index_(index),
vector_length_(vector_length),
declaring_class_def_index_(declaring_class_def_index),
has_aliased_locations_(false),
is_vec_op_(is_vec_op) {
DCHECK(ref_info != nullptr);
DCHECK((offset == kInvalidFieldOffset && index != nullptr) ||
(offset != kInvalidFieldOffset && index == nullptr));
}
ReferenceInfo* GetReferenceInfo() const { return ref_info_; }
DataType::Type GetType() const { return type_; }
size_t GetOffset() const { return offset_; }
HInstruction* GetIndex() const { return index_; }
size_t GetVectorLength() const { return vector_length_; }
bool IsVecOp() const { return is_vec_op_; }
// Returns the definition of declaring class' dex index.
// It's kDeclaringClassDefIndexForArrays for an array element.
int16_t GetDeclaringClassDefIndex() const {
return declaring_class_def_index_;
}
bool IsArray() const {
return index_ != nullptr;
}
bool HasAliasedLocations() const {
return has_aliased_locations_;
}
void SetHasAliasedLocations(bool val) {
has_aliased_locations_ = val;
}
private:
// Reference for instance/static field, array element or vector data.
ReferenceInfo* const ref_info_;
// Type of data residing at HeapLocation (always signed for integral
// data since e.g. a[i] and a[i] & 0xff are represented by differently
// signed types; char vs short are disambiguated through the reference).
const DataType::Type type_;
// Offset of static/instance field.
// Invalid when this HeapLocation is not field.
const size_t offset_;
// Index of an array element or starting index of vector data.
// Invalid when this HeapLocation is not array.
HInstruction* const index_;
// Vector length of vector data.
// When this HeapLocation is not vector data, it's value is kScalar.
const size_t vector_length_;
// Declaring class's def's dex index.
// Invalid when this HeapLocation is not field access.
const int16_t declaring_class_def_index_;
// Has aliased heap locations in the method, due to either the
// reference is aliased or the array element is aliased via different
// index names.
bool has_aliased_locations_;
// Whether this HeapLocation represents a vector operation.
bool is_vec_op_;
DISALLOW_COPY_AND_ASSIGN(HeapLocation);
};
// A HeapLocationCollector collects all relevant heap locations and keeps
// an aliasing matrix for all locations.
class HeapLocationCollector : public HGraphVisitor {
public:
static constexpr size_t kHeapLocationNotFound = -1;
// Start with a single uint32_t word. That's enough bits for pair-wise
// aliasing matrix of 8 heap locations.
static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32;
HeapLocationCollector(HGraph* graph,
ScopedArenaAllocator* allocator,
LoadStoreAnalysisType lse_type)
: HGraphVisitor(graph),
allocator_(allocator),
ref_info_array_(allocator->Adapter(kArenaAllocLSA)),
heap_locations_(allocator->Adapter(kArenaAllocLSA)),
aliasing_matrix_(allocator, kInitialAliasingMatrixBitVectorSize, true, kArenaAllocLSA),
has_heap_stores_(false),
lse_type_(lse_type) {
aliasing_matrix_.ClearAllBits();
}
~HeapLocationCollector() {
CleanUp();
}
void CleanUp() {
heap_locations_.clear();
STLDeleteContainerPointers(ref_info_array_.begin(), ref_info_array_.end());
ref_info_array_.clear();
}
size_t CountPartialSingletons() const {
return std::count_if(ref_info_array_.begin(),
ref_info_array_.end(),
[](ReferenceInfo* ri) { return ri->IsPartialSingleton(); });
}
size_t GetNumberOfHeapLocations() const {
return heap_locations_.size();
}
HeapLocation* GetHeapLocation(size_t index) const {
return heap_locations_[index];
}
size_t GetHeapLocationIndex(const HeapLocation* hl) const {
auto res = std::find(heap_locations_.cbegin(), heap_locations_.cend(), hl);
return std::distance(heap_locations_.cbegin(), res);
}
HInstruction* HuntForOriginalReference(HInstruction* ref) const {
// An original reference can be transformed by instructions like:
// i0 NewArray
// i1 HInstruction(i0) <-- NullCheck, BoundType, IntermediateAddress.
// i2 ArrayGet(i1, index)
DCHECK(ref != nullptr);
while (ref->IsNullCheck() || ref->IsBoundType() || ref->IsIntermediateAddress()) {
ref = ref->InputAt(0);
}
return ref;
}
ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const {
for (size_t i = 0; i < ref_info_array_.size(); i++) {
ReferenceInfo* ref_info = ref_info_array_[i];
if (ref_info->GetReference() == ref) {
DCHECK_EQ(i, ref_info->GetPosition());
return ref_info;
}
}
return nullptr;
}
size_t GetFieldHeapLocation(HInstruction* object, const FieldInfo* field) const {
DCHECK(object != nullptr);
DCHECK(field != nullptr);
return FindHeapLocationIndex(FindReferenceInfoOf(HuntForOriginalReference(object)),
field->GetFieldType(),
field->GetFieldOffset().SizeValue(),
nullptr,
HeapLocation::kScalar,
field->GetDeclaringClassDefIndex(),
/*is_vec_op=*/false);
}
size_t GetArrayHeapLocation(HInstruction* instruction) const {
DCHECK(instruction != nullptr);
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
DataType::Type type = instruction->GetType();
size_t vector_length = HeapLocation::kScalar;
const bool is_vec_op = instruction->IsVecStore() || instruction->IsVecLoad();
if (instruction->IsArraySet()) {
type = instruction->AsArraySet()->GetComponentType();
} else if (is_vec_op) {
HVecOperation* vec_op = instruction->AsVecOperation();
type = vec_op->GetPackedType();
vector_length = vec_op->GetVectorLength();
} else {
DCHECK(instruction->IsArrayGet());
}
return FindHeapLocationIndex(FindReferenceInfoOf(HuntForOriginalReference(array)),
type,
HeapLocation::kInvalidFieldOffset,
index,
vector_length,
HeapLocation::kDeclaringClassDefIndexForArrays,
is_vec_op);
}
bool HasHeapStores() const {
return has_heap_stores_;
}
// Find and return the heap location index in heap_locations_.
// NOTE: When heap locations are created, potentially aliasing/overlapping
// accesses are given different indexes. This find function also
// doesn't take aliasing/overlapping into account. For example,
// this function returns three different indexes for:
// - ref_info=array, index=i, vector_length=kScalar;
// - ref_info=array, index=i, vector_length=2;
// - ref_info=array, index=i, vector_length=4;
// In later analysis, ComputeMayAlias() and MayAlias() compute and tell whether
// these indexes alias.
size_t FindHeapLocationIndex(ReferenceInfo* ref_info,
DataType::Type type,
size_t offset,
HInstruction* index,
size_t vector_length,
int16_t declaring_class_def_index,
bool is_vec_op) const {
DataType::Type lookup_type = DataType::ToSigned(type);
for (size_t i = 0; i < heap_locations_.size(); i++) {
HeapLocation* loc = heap_locations_[i];
if (loc->GetReferenceInfo() == ref_info &&
loc->GetType() == lookup_type &&
loc->GetOffset() == offset &&
loc->GetIndex() == index &&
loc->GetVectorLength() == vector_length &&
loc->GetDeclaringClassDefIndex() == declaring_class_def_index &&
loc->IsVecOp() == is_vec_op) {
return i;
}
}
return kHeapLocationNotFound;
}
bool InstructionEligibleForLSERemoval(HInstruction* inst) const;
// Get some estimated statistics based on our analysis.
void DumpReferenceStats(OptimizingCompilerStats* stats);
// Returns true if heap_locations_[index1] and heap_locations_[index2] may alias.
bool MayAlias(size_t index1, size_t index2) const {
if (index1 < index2) {
return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2));
} else if (index1 > index2) {
return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1));
} else {
DCHECK(false) << "index1 and index2 are expected to be different";
return true;
}
}
void BuildAliasingMatrix() {
const size_t number_of_locations = heap_locations_.size();
if (number_of_locations == 0) {
return;
}
size_t pos = 0;
// Compute aliasing info between every pair of different heap locations.
// Save the result in a matrix represented as a BitVector.
for (size_t i = 0; i < number_of_locations - 1; i++) {
for (size_t j = i + 1; j < number_of_locations; j++) {
if (ComputeMayAlias(i, j)) {
aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos));
}
pos++;
}
}
}
static bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) {
if (ref_info1 == ref_info2) {
return true;
} else if (ref_info1->IsSingleton()) {
return false;
} else if (ref_info2->IsSingleton()) {
return false;
} else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) ||
!MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) {
return false;
}
return true;
}
private:
// An allocation cannot alias with a name which already exists at the point
// of the allocation, such as a parameter or a load happening before the allocation.
static bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) {
if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) {
// Any reference that can alias with the allocation must appear after it in the block/in
// the block's successors. In reverse post order, those instructions will be visited after
// the allocation.
return ref_info2->GetPosition() >= ref_info1->GetPosition();
}
return true;
}
bool CanArrayElementsAlias(const HInstruction* idx1,
const size_t vector_length1,
const HInstruction* idx2,
const size_t vector_length2) const;
// `index1` and `index2` are indices in the array of collected heap locations.
// Returns the position in the bit vector that tracks whether the two heap
// locations may alias.
size_t AliasingMatrixPosition(size_t index1, size_t index2) const {
DCHECK(index2 > index1);
const size_t number_of_locations = heap_locations_.size();
// It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1).
return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1));
}
// An additional position is passed in to make sure the calculated position is correct.
size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) {
size_t calculated_position = AliasingMatrixPosition(index1, index2);
DCHECK_EQ(calculated_position, position);
return calculated_position;
}
// Compute if two locations may alias to each other.
bool ComputeMayAlias(size_t index1, size_t index2) const {
DCHECK_NE(index1, index2);
HeapLocation* loc1 = heap_locations_[index1];
HeapLocation* loc2 = heap_locations_[index2];
if (loc1->GetOffset() != loc2->GetOffset()) {
// Either two different instance fields, or one is an instance
// field and the other is an array data.
return false;
}
if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) {
// Different types.
return false;
}
if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) {
return false;
}
if (loc1->IsArray() && loc2->IsArray()) {
HInstruction* idx1 = loc1->GetIndex();
HInstruction* idx2 = loc2->GetIndex();
size_t vector_length1 = loc1->GetVectorLength();
size_t vector_length2 = loc2->GetVectorLength();
if (!CanArrayElementsAlias(idx1, vector_length1, idx2, vector_length2)) {
return false;
}
}
loc1->SetHasAliasedLocations(true);
loc2->SetHasAliasedLocations(true);
return true;
}
ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* instruction) {
ReferenceInfo* ref_info = FindReferenceInfoOf(instruction);
if (ref_info == nullptr) {
size_t pos = ref_info_array_.size();
ref_info = new (allocator_) ReferenceInfo(instruction, allocator_, pos, lse_type_);
ref_info_array_.push_back(ref_info);
}
return ref_info;
}
void CreateReferenceInfoForReferenceType(HInstruction* instruction) {
if (instruction->GetType() != DataType::Type::kReference) {
return;
}
DCHECK(FindReferenceInfoOf(instruction) == nullptr);
GetOrCreateReferenceInfo(instruction);
}
void MaybeCreateHeapLocation(HInstruction* ref,
DataType::Type type,
size_t offset,
HInstruction* index,
size_t vector_length,
int16_t declaring_class_def_index,
bool is_vec_op) {
HInstruction* original_ref = HuntForOriginalReference(ref);
ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref);
size_t heap_location_idx = FindHeapLocationIndex(
ref_info, type, offset, index, vector_length, declaring_class_def_index, is_vec_op);
if (heap_location_idx == kHeapLocationNotFound) {
HeapLocation* heap_loc = new (allocator_) HeapLocation(
ref_info, type, offset, index, vector_length, declaring_class_def_index, is_vec_op);
heap_locations_.push_back(heap_loc);
}
}
void VisitFieldAccess(HInstruction* ref, const FieldInfo& field_info) {
DataType::Type type = field_info.GetFieldType();
const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex();
const size_t offset = field_info.GetFieldOffset().SizeValue();
MaybeCreateHeapLocation(ref,
type,
offset,
nullptr,
HeapLocation::kScalar,
declaring_class_def_index,
/*is_vec_op=*/false);
}
void VisitArrayAccess(HInstruction* array,
HInstruction* index,
DataType::Type type,
size_t vector_length,
bool is_vec_op) {
MaybeCreateHeapLocation(array,
type,
HeapLocation::kInvalidFieldOffset,
index,
vector_length,
HeapLocation::kDeclaringClassDefIndexForArrays,
is_vec_op);
}
void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instruction) override {
VisitFieldAccess(instruction->GetTarget(), instruction->GetFieldInfo());
CreateReferenceInfoForReferenceType(instruction);
}
void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override {
VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo());
CreateReferenceInfoForReferenceType(instruction);
}
void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override {
VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo());
has_heap_stores_ = true;
}
void VisitStaticFieldGet(HStaticFieldGet* instruction) override {
VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo());
CreateReferenceInfoForReferenceType(instruction);
}
void VisitStaticFieldSet(HStaticFieldSet* instruction) override {
VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo());
has_heap_stores_ = true;
}
// We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses
// since we cannot accurately track the fields.
void VisitArrayGet(HArrayGet* instruction) override {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
DataType::Type type = instruction->GetType();
VisitArrayAccess(array, index, type, HeapLocation::kScalar, /*is_vec_op=*/false);
CreateReferenceInfoForReferenceType(instruction);
}
void VisitArraySet(HArraySet* instruction) override {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
DataType::Type type = instruction->GetComponentType();
VisitArrayAccess(array, index, type, HeapLocation::kScalar, /*is_vec_op=*/false);
has_heap_stores_ = true;
}
void VisitVecLoad(HVecLoad* instruction) override {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
DataType::Type type = instruction->GetPackedType();
VisitArrayAccess(array, index, type, instruction->GetVectorLength(), /*is_vec_op=*/true);
CreateReferenceInfoForReferenceType(instruction);
}
void VisitVecStore(HVecStore* instruction) override {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
DataType::Type type = instruction->GetPackedType();
VisitArrayAccess(array, index, type, instruction->GetVectorLength(), /*is_vec_op=*/true);
has_heap_stores_ = true;
}
void VisitInstruction(HInstruction* instruction) override {
// Any new-instance or new-array cannot alias with references that
// pre-exist the new-instance/new-array. We append entries into
// ref_info_array_ which keeps track of the order of creation
// of reference values since we visit the blocks in reverse post order.
//
// By default, VisitXXX() (including VisitPhi()) calls VisitInstruction(),
// unless VisitXXX() is overridden. VisitInstanceFieldGet() etc. above
// also call CreateReferenceInfoForReferenceType() explicitly.
CreateReferenceInfoForReferenceType(instruction);
}
ScopedArenaAllocator* allocator_;
ScopedArenaVector<ReferenceInfo*> ref_info_array_; // All references used for heap accesses.
ScopedArenaVector<HeapLocation*> heap_locations_; // All heap locations.
ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations.
bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better
// alias analysis and won't be as effective.
LoadStoreAnalysisType lse_type_;
DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector);
};
class LoadStoreAnalysis {
public:
// for_elimination controls whether we should keep track of escapes at a per-block level for
// partial LSE.
explicit LoadStoreAnalysis(HGraph* graph,
OptimizingCompilerStats* stats,
ScopedArenaAllocator* local_allocator,
LoadStoreAnalysisType lse_type)
: graph_(graph),
stats_(stats),
heap_location_collector_(
graph,
local_allocator,
ExecutionSubgraph::CanAnalyse(graph_) ? lse_type : LoadStoreAnalysisType::kBasic) {}
const HeapLocationCollector& GetHeapLocationCollector() const {
return heap_location_collector_;
}
bool Run();
private:
HGraph* graph_;
OptimizingCompilerStats* stats_;
HeapLocationCollector heap_location_collector_;
DISALLOW_COPY_AND_ASSIGN(LoadStoreAnalysis);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_
|