1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_LOCATIONS_H_
#define ART_COMPILER_OPTIMIZING_LOCATIONS_H_
#include "base/arena_containers.h"
#include "base/arena_object.h"
#include "base/bit_field.h"
#include "base/bit_utils.h"
#include "base/bit_vector.h"
#include "base/macros.h"
#include "base/value_object.h"
namespace art HIDDEN {
class HConstant;
class HInstruction;
class Location;
std::ostream& operator<<(std::ostream& os, const Location& location);
/**
* A Location is an abstraction over the potential location
* of an instruction. It could be in register or stack.
*/
class Location : public ValueObject {
public:
enum OutputOverlap {
// The liveness of the output overlaps the liveness of one or
// several input(s); the register allocator cannot reuse an
// input's location for the output's location.
kOutputOverlap,
// The liveness of the output does not overlap the liveness of any
// input; the register allocator is allowed to reuse an input's
// location for the output's location.
kNoOutputOverlap
};
enum Kind {
kInvalid = 0,
kConstant = 1,
kStackSlot = 2, // 32bit stack slot.
kDoubleStackSlot = 3, // 64bit stack slot.
kRegister = 4, // Core register.
// We do not use the value 5 because it conflicts with kLocationConstantMask.
kDoNotUse5 = 5,
kFpuRegister = 6, // Float register.
kRegisterPair = 7, // Long register.
kFpuRegisterPair = 8, // Double register.
// We do not use the value 9 because it conflicts with kLocationConstantMask.
kDoNotUse9 = 9,
kSIMDStackSlot = 10, // 128bit stack slot. TODO: generalize with encoded #bytes?
// Unallocated location represents a location that is not fixed and can be
// allocated by a register allocator. Each unallocated location has
// a policy that specifies what kind of location is suitable. Payload
// contains register allocation policy.
kUnallocated = 11,
};
Location() : ValueObject(), value_(kInvalid) {
// Verify that non-constant location kinds do not interfere with kConstant.
static_assert((kInvalid & kLocationConstantMask) != kConstant, "TagError");
static_assert((kUnallocated & kLocationConstantMask) != kConstant, "TagError");
static_assert((kStackSlot & kLocationConstantMask) != kConstant, "TagError");
static_assert((kDoubleStackSlot & kLocationConstantMask) != kConstant, "TagError");
static_assert((kSIMDStackSlot & kLocationConstantMask) != kConstant, "TagError");
static_assert((kRegister & kLocationConstantMask) != kConstant, "TagError");
static_assert((kFpuRegister & kLocationConstantMask) != kConstant, "TagError");
static_assert((kRegisterPair & kLocationConstantMask) != kConstant, "TagError");
static_assert((kFpuRegisterPair & kLocationConstantMask) != kConstant, "TagError");
static_assert((kConstant & kLocationConstantMask) == kConstant, "TagError");
DCHECK(!IsValid());
}
Location(const Location& other) = default;
Location& operator=(const Location& other) = default;
bool IsConstant() const {
return (value_ & kLocationConstantMask) == kConstant;
}
static Location ConstantLocation(HInstruction* constant) {
DCHECK(constant != nullptr);
if (kIsDebugBuild) {
// Call out-of-line helper to avoid circular dependency with `nodes.h`.
DCheckInstructionIsConstant(constant);
}
return Location(kConstant | reinterpret_cast<uintptr_t>(constant));
}
HConstant* GetConstant() const {
DCHECK(IsConstant());
return reinterpret_cast<HConstant*>(value_ & ~kLocationConstantMask);
}
bool IsValid() const {
return value_ != kInvalid;
}
bool IsInvalid() const {
return !IsValid();
}
// Empty location. Used if there the location should be ignored.
static Location NoLocation() {
return Location();
}
// Register locations.
static Location RegisterLocation(int reg) {
return Location(kRegister, reg);
}
static Location FpuRegisterLocation(int reg) {
return Location(kFpuRegister, reg);
}
static Location RegisterPairLocation(int low, int high) {
return Location(kRegisterPair, low << 16 | high);
}
static Location FpuRegisterPairLocation(int low, int high) {
return Location(kFpuRegisterPair, low << 16 | high);
}
bool IsRegister() const {
return GetKind() == kRegister;
}
bool IsFpuRegister() const {
return GetKind() == kFpuRegister;
}
bool IsRegisterPair() const {
return GetKind() == kRegisterPair;
}
bool IsFpuRegisterPair() const {
return GetKind() == kFpuRegisterPair;
}
bool IsRegisterKind() const {
return IsRegister() || IsFpuRegister() || IsRegisterPair() || IsFpuRegisterPair();
}
int reg() const {
DCHECK(IsRegister() || IsFpuRegister());
return GetPayload();
}
int low() const {
DCHECK(IsPair());
return GetPayload() >> 16;
}
int high() const {
DCHECK(IsPair());
return GetPayload() & 0xFFFF;
}
template <typename T>
T AsRegister() const {
DCHECK(IsRegister());
return static_cast<T>(reg());
}
template <typename T>
T AsFpuRegister() const {
DCHECK(IsFpuRegister());
return static_cast<T>(reg());
}
template <typename T>
T AsRegisterPairLow() const {
DCHECK(IsRegisterPair());
return static_cast<T>(low());
}
template <typename T>
T AsRegisterPairHigh() const {
DCHECK(IsRegisterPair());
return static_cast<T>(high());
}
template <typename T>
T AsFpuRegisterPairLow() const {
DCHECK(IsFpuRegisterPair());
return static_cast<T>(low());
}
template <typename T>
T AsFpuRegisterPairHigh() const {
DCHECK(IsFpuRegisterPair());
return static_cast<T>(high());
}
bool IsPair() const {
return IsRegisterPair() || IsFpuRegisterPair();
}
Location ToLow() const {
if (IsRegisterPair()) {
return Location::RegisterLocation(low());
} else if (IsFpuRegisterPair()) {
return Location::FpuRegisterLocation(low());
} else {
DCHECK(IsDoubleStackSlot());
return Location::StackSlot(GetStackIndex());
}
}
Location ToHigh() const {
if (IsRegisterPair()) {
return Location::RegisterLocation(high());
} else if (IsFpuRegisterPair()) {
return Location::FpuRegisterLocation(high());
} else {
DCHECK(IsDoubleStackSlot());
return Location::StackSlot(GetHighStackIndex(4));
}
}
static uintptr_t EncodeStackIndex(intptr_t stack_index) {
DCHECK(-kStackIndexBias <= stack_index);
DCHECK(stack_index < kStackIndexBias);
return static_cast<uintptr_t>(kStackIndexBias + stack_index);
}
static Location StackSlot(intptr_t stack_index) {
uintptr_t payload = EncodeStackIndex(stack_index);
Location loc(kStackSlot, payload);
// Ensure that sign is preserved.
DCHECK_EQ(loc.GetStackIndex(), stack_index);
return loc;
}
bool IsStackSlot() const {
return GetKind() == kStackSlot;
}
static Location DoubleStackSlot(intptr_t stack_index) {
uintptr_t payload = EncodeStackIndex(stack_index);
Location loc(kDoubleStackSlot, payload);
// Ensure that sign is preserved.
DCHECK_EQ(loc.GetStackIndex(), stack_index);
return loc;
}
bool IsDoubleStackSlot() const {
return GetKind() == kDoubleStackSlot;
}
static Location SIMDStackSlot(intptr_t stack_index) {
uintptr_t payload = EncodeStackIndex(stack_index);
Location loc(kSIMDStackSlot, payload);
// Ensure that sign is preserved.
DCHECK_EQ(loc.GetStackIndex(), stack_index);
return loc;
}
bool IsSIMDStackSlot() const {
return GetKind() == kSIMDStackSlot;
}
static Location StackSlotByNumOfSlots(size_t num_of_slots, int spill_slot) {
DCHECK_NE(num_of_slots, 0u);
switch (num_of_slots) {
case 1u:
return Location::StackSlot(spill_slot);
case 2u:
return Location::DoubleStackSlot(spill_slot);
default:
// Assume all other stack slot sizes correspond to SIMD slot size.
return Location::SIMDStackSlot(spill_slot);
}
}
intptr_t GetStackIndex() const {
DCHECK(IsStackSlot() || IsDoubleStackSlot() || IsSIMDStackSlot());
// Decode stack index manually to preserve sign.
return GetPayload() - kStackIndexBias;
}
intptr_t GetHighStackIndex(uintptr_t word_size) const {
DCHECK(IsDoubleStackSlot());
// Decode stack index manually to preserve sign.
return GetPayload() - kStackIndexBias + word_size;
}
Kind GetKind() const {
return IsConstant() ? kConstant : KindField::Decode(value_);
}
bool Equals(Location other) const {
return value_ == other.value_;
}
bool Contains(Location other) const {
if (Equals(other)) {
return true;
} else if (IsPair() || IsDoubleStackSlot()) {
return ToLow().Equals(other) || ToHigh().Equals(other);
}
return false;
}
bool OverlapsWith(Location other) const {
// Only check the overlapping case that can happen with our register allocation algorithm.
bool overlap = Contains(other) || other.Contains(*this);
if (kIsDebugBuild && !overlap) {
// Note: These are also overlapping cases. But we are not able to handle them in
// ParallelMoveResolverWithSwap. Make sure that we do not meet such case with our compiler.
if ((IsPair() && other.IsPair()) || (IsDoubleStackSlot() && other.IsDoubleStackSlot())) {
DCHECK(!Contains(other.ToLow()));
DCHECK(!Contains(other.ToHigh()));
}
}
return overlap;
}
const char* DebugString() const {
switch (GetKind()) {
case kInvalid: return "I";
case kRegister: return "R";
case kStackSlot: return "S";
case kDoubleStackSlot: return "DS";
case kSIMDStackSlot: return "SIMD";
case kUnallocated: return "U";
case kConstant: return "C";
case kFpuRegister: return "F";
case kRegisterPair: return "RP";
case kFpuRegisterPair: return "FP";
case kDoNotUse5: // fall-through
case kDoNotUse9:
LOG(FATAL) << "Should not use this location kind";
}
UNREACHABLE();
}
// Unallocated locations.
enum Policy {
kAny,
kRequiresRegister,
kRequiresFpuRegister,
kSameAsFirstInput,
};
bool IsUnallocated() const {
return GetKind() == kUnallocated;
}
static Location UnallocatedLocation(Policy policy) {
return Location(kUnallocated, PolicyField::Encode(policy));
}
// Any free register is suitable to replace this unallocated location.
static Location Any() {
return UnallocatedLocation(kAny);
}
static Location RequiresRegister() {
return UnallocatedLocation(kRequiresRegister);
}
static Location RequiresFpuRegister() {
return UnallocatedLocation(kRequiresFpuRegister);
}
static Location RegisterOrConstant(HInstruction* instruction);
static Location RegisterOrInt32Constant(HInstruction* instruction);
static Location ByteRegisterOrConstant(int reg, HInstruction* instruction);
static Location FpuRegisterOrConstant(HInstruction* instruction);
static Location FpuRegisterOrInt32Constant(HInstruction* instruction);
// The location of the first input to the instruction will be
// used to replace this unallocated location.
static Location SameAsFirstInput() {
return UnallocatedLocation(kSameAsFirstInput);
}
Policy GetPolicy() const {
DCHECK(IsUnallocated());
return PolicyField::Decode(GetPayload());
}
bool RequiresRegisterKind() const {
return GetPolicy() == kRequiresRegister || GetPolicy() == kRequiresFpuRegister;
}
uintptr_t GetEncoding() const {
return GetPayload();
}
private:
// Number of bits required to encode Kind value.
static constexpr uint32_t kBitsForKind = 4;
static constexpr uint32_t kBitsForPayload = kBitsPerIntPtrT - kBitsForKind;
static constexpr uintptr_t kLocationConstantMask = 0x3;
explicit Location(uintptr_t value) : value_(value) {}
Location(Kind kind, uintptr_t payload)
: value_(KindField::Encode(kind) | PayloadField::Encode(payload)) {}
uintptr_t GetPayload() const {
return PayloadField::Decode(value_);
}
static void DCheckInstructionIsConstant(HInstruction* instruction);
using KindField = BitField<Kind, 0, kBitsForKind>;
using PayloadField = BitField<uintptr_t, kBitsForKind, kBitsForPayload>;
// Layout for kUnallocated locations payload.
using PolicyField = BitField<Policy, 0, 3>;
// Layout for stack slots.
static const intptr_t kStackIndexBias =
static_cast<intptr_t>(1) << (kBitsForPayload - 1);
// Location either contains kind and payload fields or a tagged handle for
// a constant locations. Values of enumeration Kind are selected in such a
// way that none of them can be interpreted as a kConstant tag.
uintptr_t value_;
};
std::ostream& operator<<(std::ostream& os, Location::Kind rhs);
std::ostream& operator<<(std::ostream& os, Location::Policy rhs);
class RegisterSet : public ValueObject {
public:
static RegisterSet Empty() { return RegisterSet(); }
static RegisterSet AllFpu() { return RegisterSet(0, -1); }
void Add(Location loc) {
if (loc.IsRegister()) {
core_registers_ |= (1 << loc.reg());
} else {
DCHECK(loc.IsFpuRegister());
floating_point_registers_ |= (1 << loc.reg());
}
}
void Remove(Location loc) {
if (loc.IsRegister()) {
core_registers_ &= ~(1 << loc.reg());
} else {
DCHECK(loc.IsFpuRegister()) << loc;
floating_point_registers_ &= ~(1 << loc.reg());
}
}
bool ContainsCoreRegister(uint32_t id) const {
return Contains(core_registers_, id);
}
bool ContainsFloatingPointRegister(uint32_t id) const {
return Contains(floating_point_registers_, id);
}
static bool Contains(uint32_t register_set, uint32_t reg) {
return (register_set & (1 << reg)) != 0;
}
bool OverlapsRegisters(Location out) {
DCHECK(out.IsRegisterKind());
switch (out.GetKind()) {
case Location::Kind::kRegister:
return ContainsCoreRegister(out.reg());
case Location::Kind::kFpuRegister:
return ContainsFloatingPointRegister(out.reg());
case Location::Kind::kRegisterPair:
return ContainsCoreRegister(out.low()) || ContainsCoreRegister(out.high());
case Location::Kind::kFpuRegisterPair:
return ContainsFloatingPointRegister(out.low()) ||
ContainsFloatingPointRegister(out.high());
default:
return false;
}
}
size_t GetNumberOfRegisters() const {
return POPCOUNT(core_registers_) + POPCOUNT(floating_point_registers_);
}
uint32_t GetCoreRegisters() const {
return core_registers_;
}
uint32_t GetFloatingPointRegisters() const {
return floating_point_registers_;
}
private:
RegisterSet() : core_registers_(0), floating_point_registers_(0) {}
RegisterSet(uint32_t core, uint32_t fp) : core_registers_(core), floating_point_registers_(fp) {}
uint32_t core_registers_;
uint32_t floating_point_registers_;
};
static constexpr bool kIntrinsified = true;
/**
* The code generator computes LocationSummary for each instruction so that
* the instruction itself knows what code to generate: where to find the inputs
* and where to place the result.
*
* The intent is to have the code for generating the instruction independent of
* register allocation. A register allocator just has to provide a LocationSummary.
*/
class LocationSummary : public ArenaObject<kArenaAllocLocationSummary> {
public:
enum CallKind {
kNoCall,
kCallOnMainAndSlowPath,
kCallOnSlowPath,
kCallOnMainOnly
};
explicit LocationSummary(HInstruction* instruction,
CallKind call_kind = kNoCall,
bool intrinsified = false);
void SetInAt(uint32_t at, Location location) {
inputs_[at] = location;
}
Location InAt(uint32_t at) const {
return inputs_[at];
}
size_t GetInputCount() const {
return inputs_.size();
}
// Set the output location. Argument `overlaps` tells whether the
// output overlaps any of the inputs (if so, it cannot share the
// same register as one of the inputs); it is set to
// `Location::kOutputOverlap` by default for safety.
void SetOut(Location location, Location::OutputOverlap overlaps = Location::kOutputOverlap) {
DCHECK(output_.IsInvalid());
output_overlaps_ = overlaps;
output_ = location;
}
void UpdateOut(Location location) {
// There are two reasons for updating an output:
// 1) Parameters, where we only know the exact stack slot after
// doing full register allocation.
// 2) Unallocated location.
DCHECK(output_.IsStackSlot() || output_.IsDoubleStackSlot() || output_.IsUnallocated());
output_ = location;
}
void AddTemp(Location location) {
temps_.push_back(location);
}
void AddRegisterTemps(size_t count) {
for (size_t i = 0; i < count; ++i) {
AddTemp(Location::RequiresRegister());
}
}
Location GetTemp(uint32_t at) const {
return temps_[at];
}
void SetTempAt(uint32_t at, Location location) {
DCHECK(temps_[at].IsUnallocated() || temps_[at].IsInvalid());
temps_[at] = location;
}
size_t GetTempCount() const {
return temps_.size();
}
bool HasTemps() const { return !temps_.empty(); }
Location Out() const { return output_; }
bool CanCall() const {
return call_kind_ != kNoCall;
}
bool WillCall() const {
return call_kind_ == kCallOnMainOnly || call_kind_ == kCallOnMainAndSlowPath;
}
bool CallsOnSlowPath() const {
return OnlyCallsOnSlowPath() || CallsOnMainAndSlowPath();
}
bool OnlyCallsOnSlowPath() const {
return call_kind_ == kCallOnSlowPath;
}
bool NeedsSuspendCheckEntry() const {
// Slow path calls do not need a SuspendCheck at method entry since they go into the runtime,
// which we expect to either do a suspend check or return quickly.
return WillCall();
}
bool CallsOnMainAndSlowPath() const {
return call_kind_ == kCallOnMainAndSlowPath;
}
bool NeedsSafepoint() const {
return CanCall();
}
void SetCustomSlowPathCallerSaves(const RegisterSet& caller_saves) {
DCHECK(OnlyCallsOnSlowPath());
has_custom_slow_path_calling_convention_ = true;
custom_slow_path_caller_saves_ = caller_saves;
}
bool HasCustomSlowPathCallingConvention() const {
return has_custom_slow_path_calling_convention_;
}
const RegisterSet& GetCustomSlowPathCallerSaves() const {
DCHECK(HasCustomSlowPathCallingConvention());
return custom_slow_path_caller_saves_;
}
void SetStackBit(uint32_t index) {
stack_mask_->SetBit(index);
}
void ClearStackBit(uint32_t index) {
stack_mask_->ClearBit(index);
}
void SetRegisterBit(uint32_t reg_id) {
register_mask_ |= (1 << reg_id);
}
uint32_t GetRegisterMask() const {
return register_mask_;
}
bool RegisterContainsObject(uint32_t reg_id) {
return RegisterSet::Contains(register_mask_, reg_id);
}
void AddLiveRegister(Location location) {
live_registers_.Add(location);
}
BitVector* GetStackMask() const {
return stack_mask_;
}
RegisterSet* GetLiveRegisters() {
return &live_registers_;
}
size_t GetNumberOfLiveRegisters() const {
return live_registers_.GetNumberOfRegisters();
}
bool OutputUsesSameAs(uint32_t input_index) const {
return (input_index == 0)
&& output_.IsUnallocated()
&& (output_.GetPolicy() == Location::kSameAsFirstInput);
}
bool IsFixedInput(uint32_t input_index) const {
Location input = inputs_[input_index];
return input.IsRegister()
|| input.IsFpuRegister()
|| input.IsPair()
|| input.IsStackSlot()
|| input.IsDoubleStackSlot();
}
bool OutputCanOverlapWithInputs() const {
return output_overlaps_ == Location::kOutputOverlap;
}
bool Intrinsified() const {
return intrinsified_;
}
private:
LocationSummary(HInstruction* instruction,
CallKind call_kind,
bool intrinsified,
ArenaAllocator* allocator);
ArenaVector<Location> inputs_;
ArenaVector<Location> temps_;
const CallKind call_kind_;
// Whether these are locations for an intrinsified call.
const bool intrinsified_;
// Whether the slow path has default or custom calling convention.
bool has_custom_slow_path_calling_convention_;
// Whether the output overlaps with any of the inputs. If it overlaps, then it cannot
// share the same register as the inputs.
Location::OutputOverlap output_overlaps_;
Location output_;
// Mask of objects that live in the stack.
BitVector* stack_mask_;
// Mask of objects that live in register.
uint32_t register_mask_;
// Registers that are in use at this position.
RegisterSet live_registers_;
// Custom slow path caller saves. Valid only if indicated by slow_path_calling_convention_.
RegisterSet custom_slow_path_caller_saves_;
friend class RegisterAllocatorTest;
DISALLOW_COPY_AND_ASSIGN(LocationSummary);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_LOCATIONS_H_
|