1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_
#define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_
// This #include should never be used by compilation, because this header file (nodes_vector.h)
// is included in the header file nodes.h itself. However it gives editing tools better context.
#include "nodes.h"
namespace art HIDDEN {
// Memory alignment, represented as an offset relative to a base, where 0 <= offset < base,
// and base is a power of two. For example, the value Alignment(16, 0) means memory is
// perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means
// memory is always exactly 4 bytes above such a boundary.
class Alignment {
public:
Alignment(size_t base, size_t offset) : base_(base), offset_(offset) {
DCHECK_LT(offset, base);
DCHECK(IsPowerOfTwo(base));
}
// Returns true if memory is at least aligned at the given boundary.
// Assumes requested base is power of two.
bool IsAlignedAt(size_t base) const {
DCHECK_NE(0u, base);
DCHECK(IsPowerOfTwo(base));
return ((offset_ | base_) & (base - 1u)) == 0;
}
size_t Base() const { return base_; }
size_t Offset() const { return offset_; }
std::string ToString() const {
return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")";
}
bool operator==(const Alignment& other) const {
return base_ == other.base_ && offset_ == other.offset_;
}
private:
size_t base_;
size_t offset_;
};
//
// Definitions of abstract vector operations in HIR.
//
// Abstraction of a vector operation, i.e., an operation that performs
// GetVectorLength() x GetPackedType() operations simultaneously.
class HVecOperation : public HVariableInputSizeInstruction {
public:
// A SIMD operation looks like a FPU location.
// TODO: we could introduce SIMD types in HIR.
static constexpr DataType::Type kSIMDType = DataType::Type::kFloat64;
HVecOperation(InstructionKind kind,
ArenaAllocator* allocator,
DataType::Type packed_type,
SideEffects side_effects,
size_t number_of_inputs,
size_t vector_length,
uint32_t dex_pc)
: HVariableInputSizeInstruction(kind,
kSIMDType,
side_effects,
dex_pc,
allocator,
number_of_inputs,
kArenaAllocVectorNode),
vector_length_(vector_length) {
SetPackedField<PackedTypeField>(packed_type);
// By default vector operations are not predicated.
SetPackedField<PredicationKindField>(PredicationKind::kNotPredicated);
DCHECK_LT(1u, vector_length);
}
// Predicated instructions execute a corresponding operation only on vector elements which are
// active (governing predicate is true for that element); the following modes determine what
// is happening with inactive elements.
//
// See HVecPredSetOperation.
enum class PredicationKind {
kNotPredicated, // Instruction doesn't take any predicate as an input.
kZeroingForm, // Inactive elements are reset to zero.
kMergingForm, // Inactive elements keep their value.
kLast = kMergingForm,
};
PredicationKind GetPredicationKind() const { return GetPackedField<PredicationKindField>(); }
// Returns whether the vector operation must be predicated in predicated SIMD mode
// (see CodeGenerator::SupportsPredicatedSIMD). The method reflects semantics of
// the instruction class rather than the state of a particular instruction instance.
//
// This property is introduced for robustness purpose - to maintain and check the invariant:
// all instructions of the same vector operation class must be either all predicated or all
// not predicated (depending on the predicated SIMD support) in a correct graph.
virtual bool MustBePredicatedInPredicatedSIMDMode() {
return true;
}
bool IsPredicated() const {
return GetPredicationKind() != PredicationKind::kNotPredicated;
}
// See HVecPredSetOperation.
void SetGoverningPredicate(HInstruction* input, PredicationKind pred_kind) {
DCHECK(!IsPredicated());
DCHECK(input->IsVecPredSetOperation());
AddInput(input);
SetPackedField<PredicationKindField>(pred_kind);
DCHECK(IsPredicated());
}
void SetMergingGoverningPredicate(HInstruction* input) {
SetGoverningPredicate(input, PredicationKind::kMergingForm);
}
void SetZeroingGoverningPredicate(HInstruction* input) {
SetGoverningPredicate(input, PredicationKind::kZeroingForm);
}
// See HVecPredSetOperation.
HVecPredSetOperation* GetGoverningPredicate() const {
DCHECK(IsPredicated());
HInstruction* pred_input = InputAt(InputCount() - 1);
DCHECK(pred_input->IsVecPredSetOperation());
return pred_input->AsVecPredSetOperation();
}
// Returns whether two vector operations are predicated by the same vector predicate
// with the same predication type.
static bool HaveSamePredicate(HVecOperation* instr0, HVecOperation* instr1) {
HVecPredSetOperation* instr0_predicate = instr0->GetGoverningPredicate();
HVecOperation::PredicationKind instr0_predicate_kind = instr0->GetPredicationKind();
return instr1->GetGoverningPredicate() == instr0_predicate &&
instr1->GetPredicationKind() == instr0_predicate_kind;
}
// Returns the number of elements packed in a vector.
size_t GetVectorLength() const {
return vector_length_;
}
// Returns the number of bytes in a full vector.
size_t GetVectorNumberOfBytes() const {
return vector_length_ * DataType::Size(GetPackedType());
}
// Returns the true component type packed in a vector.
DataType::Type GetPackedType() const {
return GetPackedField<PackedTypeField>();
}
// Assumes vector nodes cannot be moved by default. Each concrete implementation
// that can be moved should override this method and return true.
//
// Note: similar approach is used for instruction scheduling (if it is turned on for the target):
// by default HScheduler::IsSchedulable returns false for a particular HVecOperation.
// HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see
// scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also
// look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction.
//
// Note: For newly introduced vector instructions HScheduler${ARCH}::IsSchedulingBarrier must be
// altered to return true if the instruction might reside outside the SIMD loop body since SIMD
// registers are not kept alive across vector loop boundaries (yet).
bool CanBeMoved() const override { return false; }
// Tests if all data of a vector node (vector length and packed type) is equal.
// Each concrete implementation that adds more fields should test equality of
// those fields in its own method *and* call all super methods.
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsVecOperation());
const HVecOperation* o = other->AsVecOperation();
return GetVectorLength() == o->GetVectorLength() && GetPackedType() == o->GetPackedType();
}
// Maps an integral type to the same-size signed type and leaves other types alone.
static DataType::Type ToSignedType(DataType::Type type) {
switch (type) {
case DataType::Type::kBool: // 1-byte storage unit
case DataType::Type::kUint8:
return DataType::Type::kInt8;
case DataType::Type::kUint16:
return DataType::Type::kInt16;
default:
DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type;
return type;
}
}
// Maps an integral type to the same-size unsigned type and leaves other types alone.
static DataType::Type ToUnsignedType(DataType::Type type) {
switch (type) {
case DataType::Type::kBool: // 1-byte storage unit
case DataType::Type::kInt8:
return DataType::Type::kUint8;
case DataType::Type::kInt16:
return DataType::Type::kUint16;
default:
DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type;
return type;
}
}
// Maps an integral type to the same-size (un)signed type. Leaves other types alone.
static DataType::Type ToProperType(DataType::Type type, bool is_unsigned) {
return is_unsigned ? ToUnsignedType(type) : ToSignedType(type);
}
// Helper method to determine if an instruction returns a SIMD value.
// TODO: This method is needed until we introduce SIMD as proper type.
static bool ReturnsSIMDValue(HInstruction* instruction) {
if (instruction->IsVecOperation()) {
return !instruction->IsVecExtractScalar(); // only scalar returning vec op
} else if (instruction->IsPhi()) {
// Vectorizer only uses Phis in reductions, so checking for a 2-way phi
// with a direct vector operand as second argument suffices.
return
instruction->GetType() == kSIMDType &&
instruction->InputCount() == 2 &&
instruction->InputAt(1)->IsVecOperation();
}
return false;
}
DECLARE_ABSTRACT_INSTRUCTION(VecOperation);
protected:
// Additional packed bits.
static constexpr size_t kPredicationKind = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kPredicationKindSize =
MinimumBitsToStore(static_cast<size_t>(PredicationKind::kLast));
static constexpr size_t kFieldPackedType = kPredicationKind + kPredicationKindSize;
static constexpr size_t kFieldPackedTypeSize =
MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
static constexpr size_t kNumberOfVectorOpPackedBits = kFieldPackedType + kFieldPackedTypeSize;
static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using PackedTypeField = BitField<DataType::Type, kFieldPackedType, kFieldPackedTypeSize>;
using PredicationKindField = BitField<PredicationKind, kPredicationKind, kPredicationKindSize>;
DEFAULT_COPY_CONSTRUCTOR(VecOperation);
private:
const size_t vector_length_;
};
// Abstraction of a unary vector operation.
class HVecUnaryOperation : public HVecOperation {
public:
HVecUnaryOperation(InstructionKind kind,
ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kind,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 1,
vector_length,
dex_pc) {
SetRawInputAt(0, input);
}
HInstruction* GetInput() const { return InputAt(0); }
DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecUnaryOperation);
};
// Abstraction of a binary vector operation.
class HVecBinaryOperation : public HVecOperation {
public:
HVecBinaryOperation(InstructionKind kind,
ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kind,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 2,
vector_length,
dex_pc) {
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
HInstruction* GetLeft() const { return InputAt(0); }
HInstruction* GetRight() const { return InputAt(1); }
DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecBinaryOperation);
};
// Abstraction of a vector operation that references memory, with an alignment.
// The Android runtime guarantees elements have at least natural alignment.
class HVecMemoryOperation : public HVecOperation {
public:
HVecMemoryOperation(InstructionKind kind,
ArenaAllocator* allocator,
DataType::Type packed_type,
SideEffects side_effects,
size_t number_of_inputs,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kind,
allocator,
packed_type,
side_effects,
number_of_inputs,
vector_length,
dex_pc),
alignment_(DataType::Size(packed_type), 0) {
DCHECK_GE(number_of_inputs, 2u);
}
void SetAlignment(Alignment alignment) { alignment_ = alignment; }
Alignment GetAlignment() const { return alignment_; }
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsVecMemoryOperation());
const HVecMemoryOperation* o = other->AsVecMemoryOperation();
return HVecOperation::InstructionDataEquals(o) && GetAlignment() == o->GetAlignment();
}
DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecMemoryOperation);
private:
Alignment alignment_;
};
// Packed type consistency checker ("same vector length" integral types may mix freely).
// Tests relaxed type consistency in which packed same-size integral types can co-exist,
// but other type mixes are an error.
inline static bool HasConsistentPackedTypes(HInstruction* input, DataType::Type type) {
if (input->IsPhi()) {
return input->GetType() == HVecOperation::kSIMDType; // carries SIMD
}
DCHECK(input->IsVecOperation());
DataType::Type input_type = input->AsVecOperation()->GetPackedType();
DCHECK_EQ(HVecOperation::ToUnsignedType(input_type) == HVecOperation::ToUnsignedType(type),
HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type));
return HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type);
}
//
// Definitions of concrete unary vector operations in HIR.
//
// Replicates the given scalar into a vector,
// viz. replicate(x) = [ x, .. , x ].
class HVecReplicateScalar final : public HVecUnaryOperation {
public:
HVecReplicateScalar(ArenaAllocator* allocator,
HInstruction* scalar,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecUnaryOperation(
kVecReplicateScalar, allocator, scalar, packed_type, vector_length, dex_pc) {
DCHECK(!ReturnsSIMDValue(scalar));
}
// A replicate needs to stay in place, since SIMD registers are not
// kept alive across vector loop boundaries (yet).
bool CanBeMoved() const override { return false; }
DECLARE_INSTRUCTION(VecReplicateScalar);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecReplicateScalar);
};
// Extracts a particular scalar from the given vector,
// viz. extract[ x1, .. , xn ] = x_i.
//
// TODO: for now only i == 1 case supported.
class HVecExtractScalar final : public HVecUnaryOperation {
public:
HVecExtractScalar(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
size_t index,
uint32_t dex_pc)
: HVecUnaryOperation(
kVecExtractScalar, allocator, input, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(input, packed_type));
DCHECK_LT(index, vector_length);
DCHECK_EQ(index, 0u);
// Yields a single component in the vector.
// Overrides the kSIMDType set by the VecOperation constructor.
SetPackedField<TypeField>(packed_type);
}
// An extract needs to stay in place, since SIMD registers are not
// kept alive across vector loop boundaries (yet).
bool CanBeMoved() const override { return false; }
DECLARE_INSTRUCTION(VecExtractScalar);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecExtractScalar);
};
// Reduces the given vector into the first element as sum/min/max,
// viz. sum-reduce[ x1, .. , xn ] = [ y, ---- ], where y = sum xi
// and the "-" denotes "don't care" (implementation dependent).
class HVecReduce final : public HVecUnaryOperation {
public:
enum ReductionKind {
kSum = 1,
kMin = 2,
kMax = 3
};
HVecReduce(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
ReductionKind reduction_kind,
uint32_t dex_pc)
: HVecUnaryOperation(kVecReduce, allocator, input, packed_type, vector_length, dex_pc),
reduction_kind_(reduction_kind) {
DCHECK(HasConsistentPackedTypes(input, packed_type));
}
ReductionKind GetReductionKind() const { return reduction_kind_; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsVecReduce());
const HVecReduce* o = other->AsVecReduce();
return HVecOperation::InstructionDataEquals(o) && GetReductionKind() == o->GetReductionKind();
}
DECLARE_INSTRUCTION(VecReduce);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecReduce);
private:
const ReductionKind reduction_kind_;
};
// Converts every component in the vector,
// viz. cnv[ x1, .. , xn ] = [ cnv(x1), .. , cnv(xn) ].
class HVecCnv final : public HVecUnaryOperation {
public:
HVecCnv(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecUnaryOperation(kVecCnv, allocator, input, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
DCHECK_NE(GetInputType(), GetResultType()); // actual convert
}
DataType::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); }
DataType::Type GetResultType() const { return GetPackedType(); }
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecCnv);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecCnv);
};
// Negates every component in the vector,
// viz. neg[ x1, .. , xn ] = [ -x1, .. , -xn ].
class HVecNeg final : public HVecUnaryOperation {
public:
HVecNeg(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecUnaryOperation(kVecNeg, allocator, input, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(input, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecNeg);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecNeg);
};
// Takes absolute value of every component in the vector,
// viz. abs[ x1, .. , xn ] = [ |x1|, .. , |xn| ]
// for signed operand x.
class HVecAbs final : public HVecUnaryOperation {
public:
HVecAbs(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecUnaryOperation(kVecAbs, allocator, input, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(input, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecAbs);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecAbs);
};
// Bitwise- or boolean-nots every component in the vector,
// viz. not[ x1, .. , xn ] = [ ~x1, .. , ~xn ], or
// not[ x1, .. , xn ] = [ !x1, .. , !xn ] for boolean.
class HVecNot final : public HVecUnaryOperation {
public:
HVecNot(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecUnaryOperation(kVecNot, allocator, input, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecNot);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecNot);
};
//
// Definitions of concrete binary vector operations in HIR.
//
// Adds every component in the two vectors,
// viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ].
class HVecAdd final : public HVecBinaryOperation {
public:
HVecAdd(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecAdd, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecAdd);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecAdd);
};
// Adds every component in the two vectors using saturation arithmetic,
// viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 +_sat y1, .. , xn +_sat yn ]
// for either both signed or both unsigned operands x, y (reflected in packed_type).
class HVecSaturationAdd final : public HVecBinaryOperation {
public:
HVecSaturationAdd(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(
kVecSaturationAdd, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecSaturationAdd);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecSaturationAdd);
};
// Performs halving add on every component in the two vectors, viz.
// rounded [ x1, .. , xn ] hradd [ y1, .. , yn ] = [ (x1 + y1 + 1) >> 1, .. , (xn + yn + 1) >> 1 ]
// truncated [ x1, .. , xn ] hadd [ y1, .. , yn ] = [ (x1 + y1) >> 1, .. , (xn + yn ) >> 1 ]
// for either both signed or both unsigned operands x, y (reflected in packed_type).
class HVecHalvingAdd final : public HVecBinaryOperation {
public:
HVecHalvingAdd(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
bool is_rounded,
uint32_t dex_pc)
: HVecBinaryOperation(
kVecHalvingAdd, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
SetPackedFlag<kFieldHAddIsRounded>(is_rounded);
}
bool IsRounded() const { return GetPackedFlag<kFieldHAddIsRounded>(); }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsVecHalvingAdd());
const HVecHalvingAdd* o = other->AsVecHalvingAdd();
return HVecOperation::InstructionDataEquals(o) && IsRounded() == o->IsRounded();
}
DECLARE_INSTRUCTION(VecHalvingAdd);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecHalvingAdd);
private:
// Additional packed bits.
static constexpr size_t kFieldHAddIsRounded = HVecOperation::kNumberOfVectorOpPackedBits;
static constexpr size_t kNumberOfHAddPackedBits = kFieldHAddIsRounded + 1;
static_assert(kNumberOfHAddPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
};
// Subtracts every component in the two vectors,
// viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ].
class HVecSub final : public HVecBinaryOperation {
public:
HVecSub(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecSub, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecSub);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecSub);
};
// Subtracts every component in the two vectors using saturation arithmetic,
// viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 -_sat y1, .. , xn -_sat yn ]
// for either both signed or both unsigned operands x, y (reflected in packed_type).
class HVecSaturationSub final : public HVecBinaryOperation {
public:
HVecSaturationSub(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(
kVecSaturationSub, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecSaturationSub);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecSaturationSub);
};
// Multiplies every component in the two vectors,
// viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ].
class HVecMul final : public HVecBinaryOperation {
public:
HVecMul(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecMul, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecMul);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecMul);
};
// Divides every component in the two vectors,
// viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ].
class HVecDiv final : public HVecBinaryOperation {
public:
HVecDiv(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecDiv, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecDiv);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecDiv);
};
// Takes minimum of every component in the two vectors,
// viz. MIN( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ min(x1, y1), .. , min(xn, yn) ]
// for either both signed or both unsigned operands x, y (reflected in packed_type).
class HVecMin final : public HVecBinaryOperation {
public:
HVecMin(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecMin, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecMin);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecMin);
};
// Takes maximum of every component in the two vectors,
// viz. MAX( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ max(x1, y1), .. , max(xn, yn) ]
// for either both signed or both unsigned operands x, y (reflected in packed_type).
class HVecMax final : public HVecBinaryOperation {
public:
HVecMax(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecMax, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
DCHECK(HasConsistentPackedTypes(right, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecMax);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecMax);
};
// Bitwise-ands every component in the two vectors,
// viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ].
class HVecAnd final : public HVecBinaryOperation {
public:
HVecAnd(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecAnd, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecAnd);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecAnd);
};
// Bitwise-and-nots every component in the two vectors,
// viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ].
class HVecAndNot final : public HVecBinaryOperation {
public:
HVecAndNot(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(
kVecAndNot, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecAndNot);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecAndNot);
};
// Bitwise-ors every component in the two vectors,
// viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ].
class HVecOr final : public HVecBinaryOperation {
public:
HVecOr(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecOr, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecOr);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecOr);
};
// Bitwise-xors every component in the two vectors,
// viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ].
class HVecXor final : public HVecBinaryOperation {
public:
HVecXor(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecXor, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecXor);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecXor);
};
// Logically shifts every component in the vector left by the given distance,
// viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ].
class HVecShl final : public HVecBinaryOperation {
public:
HVecShl(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecShl, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecShl);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecShl);
};
// Arithmetically shifts every component in the vector right by the given distance,
// viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ].
class HVecShr final : public HVecBinaryOperation {
public:
HVecShr(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecShr, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecShr);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecShr);
};
// Logically shifts every component in the vector right by the given distance,
// viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ].
class HVecUShr final : public HVecBinaryOperation {
public:
HVecUShr(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecBinaryOperation(kVecUShr, allocator, left, right, packed_type, vector_length, dex_pc) {
DCHECK(HasConsistentPackedTypes(left, packed_type));
}
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecUShr);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecUShr);
};
//
// Definitions of concrete miscellaneous vector operations in HIR.
//
// Assigns the given scalar elements to a vector,
// viz. set( array(x1, .. , xn) ) = [ x1, .. , xn ] if n == m,
// set( array(x1, .. , xm) ) = [ x1, .. , xm, 0, .. , 0 ] if m < n.
class HVecSetScalars final : public HVecOperation {
public:
HVecSetScalars(ArenaAllocator* allocator,
HInstruction* scalars[],
DataType::Type packed_type,
size_t vector_length,
size_t number_of_scalars,
uint32_t dex_pc)
: HVecOperation(kVecSetScalars,
allocator,
packed_type,
SideEffects::None(),
number_of_scalars,
vector_length,
dex_pc) {
for (size_t i = 0; i < number_of_scalars; i++) {
DCHECK(!ReturnsSIMDValue(scalars[i]));
SetRawInputAt(0, scalars[i]);
}
}
// Setting scalars needs to stay in place, since SIMD registers are not
// kept alive across vector loop boundaries (yet).
bool CanBeMoved() const override { return false; }
DECLARE_INSTRUCTION(VecSetScalars);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecSetScalars);
};
// Multiplies every component in the two vectors, adds the result vector to the accumulator vector,
// viz. [ a1, .. , an ] + [ x1, .. , xn ] * [ y1, .. , yn ] = [ a1 + x1 * y1, .. , an + xn * yn ].
// For floating point types, Java rounding behavior must be preserved; the products are rounded to
// the proper precision before being added. "Fused" multiply-add operations available on several
// architectures are not usable since they would violate Java language rules.
class HVecMultiplyAccumulate final : public HVecOperation {
public:
HVecMultiplyAccumulate(ArenaAllocator* allocator,
InstructionKind op,
HInstruction* accumulator,
HInstruction* mul_left,
HInstruction* mul_right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kVecMultiplyAccumulate,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 3,
vector_length,
dex_pc),
op_kind_(op) {
DCHECK(op == InstructionKind::kAdd || op == InstructionKind::kSub);
DCHECK(HasConsistentPackedTypes(accumulator, packed_type));
DCHECK(HasConsistentPackedTypes(mul_left, packed_type));
DCHECK(HasConsistentPackedTypes(mul_right, packed_type));
// Remove the following if we add an architecture that supports floating point multiply-add
// with Java-compatible rounding.
DCHECK(DataType::IsIntegralType(packed_type));
SetRawInputAt(0, accumulator);
SetRawInputAt(1, mul_left);
SetRawInputAt(2, mul_right);
}
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsVecMultiplyAccumulate());
const HVecMultiplyAccumulate* o = other->AsVecMultiplyAccumulate();
return HVecOperation::InstructionDataEquals(o) && GetOpKind() == o->GetOpKind();
}
InstructionKind GetOpKind() const { return op_kind_; }
DECLARE_INSTRUCTION(VecMultiplyAccumulate);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecMultiplyAccumulate);
private:
// Indicates if this is a MADD or MSUB.
const InstructionKind op_kind_;
};
// Takes the absolute difference of two vectors, and adds the results to
// same-precision or wider-precision components in the accumulator,
// viz. SAD([ a1, .. , am ], [ x1, .. , xn ], [ y1, .. , yn ]) =
// [ a1 + sum abs(xi-yi), .. , am + sum abs(xj-yj) ],
// for m <= n, non-overlapping sums, and signed operands x, y.
class HVecSADAccumulate final : public HVecOperation {
public:
HVecSADAccumulate(ArenaAllocator* allocator,
HInstruction* accumulator,
HInstruction* sad_left,
HInstruction* sad_right,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kVecSADAccumulate,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 3,
vector_length,
dex_pc) {
DCHECK(HasConsistentPackedTypes(accumulator, packed_type));
DCHECK(sad_left->IsVecOperation());
DCHECK(sad_right->IsVecOperation());
DCHECK_EQ(ToSignedType(sad_left->AsVecOperation()->GetPackedType()),
ToSignedType(sad_right->AsVecOperation()->GetPackedType()));
SetRawInputAt(0, accumulator);
SetRawInputAt(1, sad_left);
SetRawInputAt(2, sad_right);
}
DECLARE_INSTRUCTION(VecSADAccumulate);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecSADAccumulate);
};
// Performs dot product of two vectors and adds the result to wider precision components in
// the accumulator.
//
// viz. DOT_PRODUCT([ a1, .. , am], [ x1, .. , xn ], [ y1, .. , yn ]) =
// [ a1 + sum(xi * yi), .. , am + sum(xj * yj) ],
// for m <= n, non-overlapping sums,
// for either both signed or both unsigned operands x, y.
//
// Notes:
// - packed type reflects the type of sum reduction, not the type of the operands.
// - IsZeroExtending() is used to determine the kind of signed/zero extension to be
// performed for the operands.
//
// TODO: Support types other than kInt32 for packed type.
class HVecDotProd final : public HVecOperation {
public:
HVecDotProd(ArenaAllocator* allocator,
HInstruction* accumulator,
HInstruction* left,
HInstruction* right,
DataType::Type packed_type,
bool is_zero_extending,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kVecDotProd,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 3,
vector_length,
dex_pc) {
DCHECK(HasConsistentPackedTypes(accumulator, packed_type));
DCHECK(DataType::IsIntegralType(packed_type));
DCHECK(left->IsVecOperation());
DCHECK(right->IsVecOperation());
DCHECK_EQ(ToSignedType(left->AsVecOperation()->GetPackedType()),
ToSignedType(right->AsVecOperation()->GetPackedType()));
SetRawInputAt(0, accumulator);
SetRawInputAt(1, left);
SetRawInputAt(2, right);
SetPackedFlag<kFieldHDotProdIsZeroExtending>(is_zero_extending);
}
bool IsZeroExtending() const { return GetPackedFlag<kFieldHDotProdIsZeroExtending>(); }
bool CanBeMoved() const override { return true; }
DECLARE_INSTRUCTION(VecDotProd);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecDotProd);
private:
// Additional packed bits.
static constexpr size_t kFieldHDotProdIsZeroExtending =
HVecOperation::kNumberOfVectorOpPackedBits;
static constexpr size_t kNumberOfHDotProdPackedBits = kFieldHDotProdIsZeroExtending + 1;
static_assert(kNumberOfHDotProdPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
};
// Loads a vector from memory, viz. load(mem, 1)
// yield the vector [ mem(1), .. , mem(n) ].
class HVecLoad final : public HVecMemoryOperation {
public:
HVecLoad(ArenaAllocator* allocator,
HInstruction* base,
HInstruction* index,
DataType::Type packed_type,
SideEffects side_effects,
size_t vector_length,
bool is_string_char_at,
uint32_t dex_pc)
: HVecMemoryOperation(kVecLoad,
allocator,
packed_type,
side_effects,
/* number_of_inputs= */ 2,
vector_length,
dex_pc) {
SetRawInputAt(0, base);
SetRawInputAt(1, index);
SetPackedFlag<kFieldIsStringCharAt>(is_string_char_at);
}
bool IsStringCharAt() const { return GetPackedFlag<kFieldIsStringCharAt>(); }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsVecLoad());
const HVecLoad* o = other->AsVecLoad();
return HVecMemoryOperation::InstructionDataEquals(o) && IsStringCharAt() == o->IsStringCharAt();
}
DECLARE_INSTRUCTION(VecLoad);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecLoad);
private:
// Additional packed bits.
static constexpr size_t kFieldIsStringCharAt = HVecOperation::kNumberOfVectorOpPackedBits;
static constexpr size_t kNumberOfVecLoadPackedBits = kFieldIsStringCharAt + 1;
static_assert(kNumberOfVecLoadPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
};
// Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] )
// sets mem(1) = x1, .. , mem(n) = xn.
class HVecStore final : public HVecMemoryOperation {
public:
HVecStore(ArenaAllocator* allocator,
HInstruction* base,
HInstruction* index,
HInstruction* value,
DataType::Type packed_type,
SideEffects side_effects,
size_t vector_length,
uint32_t dex_pc)
: HVecMemoryOperation(kVecStore,
allocator,
packed_type,
side_effects,
/* number_of_inputs= */ 3,
vector_length,
dex_pc) {
DCHECK(HasConsistentPackedTypes(value, packed_type));
SetRawInputAt(0, base);
SetRawInputAt(1, index);
SetRawInputAt(2, value);
}
// A store needs to stay in place.
bool CanBeMoved() const override { return false; }
HInstruction* GetValue() const { return InputAt(2); }
DECLARE_INSTRUCTION(VecStore);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecStore)
};
//
// 'Predicate-setting' instructions.
//
// An abstract class for instructions for which the output value is a vector predicate -
// a special kind of vector value:
//
// viz. [ p1, .. , pn ], where p_i is from { 0, 1 }.
//
// A VecOperation OP executes the same operation (e.g. ADD) on multiple elements of the vector.
// It can be either unpredicated (operation is done on ALL of the elements) or predicated (only
// on SOME elements, determined by a special extra input - vector predicate).
// Implementations can vary depending on the ISA; the general idea is that for each element of the
// regular vector a vector predicate has a corresponding element with either 0 or 1.
// The value determines whether a vector element will be involved in OP calculations or not
// (active or inactive). A vector predicate is referred as governing one if it is used to
// control the execution of a predicated instruction.
//
// Note: vector predicate value type is introduced alongside existing vectors of booleans and
// vectors of bytes to reflect their special semantics.
//
// TODO: we could introduce SIMD types in HIR.
class HVecPredSetOperation : public HVecOperation {
public:
// A vector predicate-setting operation looks like a Int64 location.
// TODO: we could introduce vector types in HIR.
static constexpr DataType::Type kSIMDPredType = DataType::Type::kInt64;
HVecPredSetOperation(InstructionKind kind,
ArenaAllocator* allocator,
DataType::Type packed_type,
SideEffects side_effects,
size_t number_of_inputs,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kind,
allocator,
packed_type,
side_effects,
number_of_inputs,
vector_length,
dex_pc) {
// Overrides the kSIMDType set by the VecOperation constructor.
SetPackedField<TypeField>(kSIMDPredType);
}
bool CanBeMoved() const override { return true; }
DECLARE_ABSTRACT_INSTRUCTION(VecPredSetOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecPredSetOperation);
};
// Sets all the vector predicate elements as active or inactive.
//
// viz. [ p1, .. , pn ] = [ val, .. , val ] where val is from { 1, 0 }.
class HVecPredSetAll final : public HVecPredSetOperation {
public:
HVecPredSetAll(ArenaAllocator* allocator,
HInstruction* input,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc) :
HVecPredSetOperation(kVecPredSetAll,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 1,
vector_length,
dex_pc) {
DCHECK(input->IsIntConstant());
SetRawInputAt(0, input);
MarkEmittedAtUseSite();
}
// Having governing predicate doesn't make sense for set all TRUE/FALSE instruction.
bool MustBePredicatedInPredicatedSIMDMode() override { return false; }
bool IsSetTrue() const { return InputAt(0)->AsIntConstant()->IsTrue(); }
// Vector predicates are not kept alive across vector loop boundaries.
bool CanBeMoved() const override { return false; }
DECLARE_INSTRUCTION(VecPredSetAll);
protected:
DEFAULT_COPY_CONSTRUCTOR(VecPredSetAll);
};
//
// Arm64 SVE-specific instructions.
//
// Classes of instructions which are specific to Arm64 SVE (though could be adopted
// by other targets, possibly being lowered to a number of ISA instructions) and
// implement SIMD loop predicated execution idiom.
//
// Takes two scalar values x and y, creates a vector S: s(n) = x + n, compares (OP) each s(n)
// with y and set the corresponding element of the predicate register to the result of the
// comparison.
//
// viz. [ p1, .. , pn ] = [ x OP y , (x + 1) OP y, .. , (x + n) OP y ] where OP is CondKind
// condition.
class HVecPredWhile final : public HVecPredSetOperation {
public:
enum class CondKind {
kLE, // signed less than or equal.
kLO, // unsigned lower.
kLS, // unsigned lower or same.
kLT, // signed less.
kLast = kLT,
};
HVecPredWhile(ArenaAllocator* allocator,
HInstruction* left,
HInstruction* right,
CondKind cond,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc) :
HVecPredSetOperation(kVecPredWhile,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs= */ 2,
vector_length,
dex_pc) {
DCHECK(!left->IsVecOperation());
DCHECK(!left->IsVecPredSetOperation());
DCHECK(!right->IsVecOperation());
DCHECK(!right->IsVecPredSetOperation());
DCHECK(DataType::IsIntegralType(left->GetType()));
DCHECK(DataType::IsIntegralType(right->GetType()));
SetRawInputAt(0, left);
SetRawInputAt(1, right);
SetPackedField<CondKindField>(cond);
}
// This is a special loop control instruction which must not be predicated.
bool MustBePredicatedInPredicatedSIMDMode() override { return false; }
CondKind GetCondKind() const {
return GetPackedField<CondKindField>();
}
DECLARE_INSTRUCTION(VecPredWhile);
protected:
// Additional packed bits.
static constexpr size_t kCondKind = HVecOperation::kNumberOfVectorOpPackedBits;
static constexpr size_t kCondKindSize =
MinimumBitsToStore(static_cast<size_t>(CondKind::kLast));
static constexpr size_t kNumberOfVecPredConditionPackedBits = kCondKind + kCondKindSize;
static_assert(kNumberOfVecPredConditionPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using CondKindField = BitField<CondKind, kCondKind, kCondKindSize>;
DEFAULT_COPY_CONSTRUCTOR(VecPredWhile);
};
// Evaluates the predicate condition (PCondKind) for a vector predicate; outputs
// a scalar boolean value result.
//
// Note: as VecPredCondition can be also predicated, only active elements (determined by the
// instruction's governing predicate) of the input vector predicate are used for condition
// evaluation.
//
// Note: this instruction is currently used as a workaround for the fact that IR instructions
// can't have more than one output.
class HVecPredCondition final : public HVecOperation {
public:
// To get more info on the condition kinds please see "2.2 Process state, PSTATE" section of
// "ARM Architecture Reference Manual Supplement. The Scalable Vector Extension (SVE),
// for ARMv8-A".
enum class PCondKind {
kNone, // No active elements were TRUE.
kAny, // An active element was TRUE.
kNLast, // The last active element was not TRUE.
kLast, // The last active element was TRUE.
kFirst, // The first active element was TRUE.
kNFirst, // The first active element was not TRUE.
kPMore, // An active element was TRUE but not the last active element.
kPLast, // The last active element was TRUE or no active elements were TRUE.
kEnumLast = kPLast
};
HVecPredCondition(ArenaAllocator* allocator,
HInstruction* input,
PCondKind pred_cond,
DataType::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(kVecPredCondition,
allocator,
packed_type,
SideEffects::None(),
/* number_of_inputs */ 1,
vector_length,
dex_pc) {
DCHECK(input->IsVecPredSetOperation());
SetRawInputAt(0, input);
// Overrides the kSIMDType set by the VecOperation constructor.
SetPackedField<TypeField>(DataType::Type::kBool);
SetPackedField<CondKindField>(pred_cond);
}
// This instruction is currently used only as a special loop control instruction
// which must not be predicated.
// TODO: Remove the constraint.
bool MustBePredicatedInPredicatedSIMDMode() override { return false; }
PCondKind GetPCondKind() const {
return GetPackedField<CondKindField>();
}
DECLARE_INSTRUCTION(VecPredCondition);
protected:
// Additional packed bits.
static constexpr size_t kCondKind = HVecOperation::kNumberOfVectorOpPackedBits;
static constexpr size_t kCondKindSize =
MinimumBitsToStore(static_cast<size_t>(PCondKind::kEnumLast));
static constexpr size_t kNumberOfVecPredConditionPackedBits = kCondKind + kCondKindSize;
static_assert(kNumberOfVecPredConditionPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using CondKindField = BitField<PCondKind, kCondKind, kCondKindSize>;
DEFAULT_COPY_CONSTRUCTOR(VecPredCondition);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_
|