1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "optimizing_compiler.h"
#include <fstream>
#include <memory>
#include <sstream>
#include <stdint.h>
#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/arena_containers.h"
#include "base/dumpable.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/scoped_arena_allocator.h"
#include "base/timing_logger.h"
#include "builder.h"
#include "code_generator.h"
#include "compiler.h"
#include "debug/elf_debug_writer.h"
#include "debug/method_debug_info.h"
#include "dex/dex_file_types.h"
#include "driver/compiled_code_storage.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "graph_checker.h"
#include "graph_visualizer.h"
#include "inliner.h"
#include "jit/debugger_interface.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/jit_logger.h"
#include "jni/quick/jni_compiler.h"
#include "linker/linker_patch.h"
#include "nodes.h"
#include "oat_quick_method_header.h"
#include "optimizing/write_barrier_elimination.h"
#include "prepare_for_register_allocation.h"
#include "reference_type_propagation.h"
#include "register_allocator_linear_scan.h"
#include "select_generator.h"
#include "ssa_builder.h"
#include "ssa_liveness_analysis.h"
#include "ssa_phi_elimination.h"
#include "stack_map_stream.h"
#include "utils/assembler.h"
namespace art HIDDEN {
static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
static constexpr const char* kPassNameSeparator = "$";
/**
* Used by the code generator, to allocate the code in a vector.
*/
class CodeVectorAllocator final : public CodeAllocator {
public:
explicit CodeVectorAllocator(ArenaAllocator* allocator)
: memory_(allocator->Adapter(kArenaAllocCodeBuffer)) {}
uint8_t* Allocate(size_t size) override {
memory_.resize(size);
return &memory_[0];
}
ArrayRef<const uint8_t> GetMemory() const override { return ArrayRef<const uint8_t>(memory_); }
uint8_t* GetData() { return memory_.data(); }
private:
ArenaVector<uint8_t> memory_;
DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
};
/**
* Filter to apply to the visualizer. Methods whose name contain that filter will
* be dumped.
*/
static constexpr const char kStringFilter[] = "";
class PassScope;
class PassObserver : public ValueObject {
public:
PassObserver(HGraph* graph,
CodeGenerator* codegen,
std::ostream* visualizer_output,
const CompilerOptions& compiler_options)
: graph_(graph),
last_seen_graph_size_(0),
cached_method_name_(),
timing_logger_enabled_(compiler_options.GetDumpPassTimings()),
timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
disasm_info_(graph->GetAllocator()),
visualizer_oss_(),
visualizer_output_(visualizer_output),
visualizer_enabled_(!compiler_options.GetDumpCfgFileName().empty()),
visualizer_(&visualizer_oss_, graph, codegen),
codegen_(codegen),
graph_in_bad_state_(false) {
if (timing_logger_enabled_ || visualizer_enabled_) {
if (!IsVerboseMethod(compiler_options, GetMethodName())) {
timing_logger_enabled_ = visualizer_enabled_ = false;
}
if (visualizer_enabled_) {
visualizer_.PrintHeader(GetMethodName());
codegen->SetDisassemblyInformation(&disasm_info_);
}
}
}
~PassObserver() {
if (timing_logger_enabled_) {
LOG(INFO) << "TIMINGS " << GetMethodName();
LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
}
if (visualizer_enabled_) {
FlushVisualizer();
}
DCHECK(visualizer_oss_.str().empty());
}
void DumpDisassembly() {
if (visualizer_enabled_) {
visualizer_.DumpGraphWithDisassembly();
FlushVisualizer();
}
}
void SetGraphInBadState() { graph_in_bad_state_ = true; }
const char* GetMethodName() {
// PrettyMethod() is expensive, so we delay calling it until we actually have to.
if (cached_method_name_.empty()) {
cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
}
return cached_method_name_.c_str();
}
private:
void StartPass(const char* pass_name) {
VLOG(compiler) << "Starting pass: " << pass_name;
// Dump graph first, then start timer.
if (visualizer_enabled_) {
visualizer_.DumpGraph(pass_name, /* is_after_pass= */ false, graph_in_bad_state_);
FlushVisualizer();
}
if (timing_logger_enabled_) {
timing_logger_.StartTiming(pass_name);
}
}
void FlushVisualizer() {
*visualizer_output_ << visualizer_oss_.str();
visualizer_output_->flush();
visualizer_oss_.str("");
visualizer_oss_.clear();
}
void EndPass(const char* pass_name, bool pass_change) {
// Pause timer first, then dump graph.
if (timing_logger_enabled_) {
timing_logger_.EndTiming();
}
if (visualizer_enabled_) {
visualizer_.DumpGraph(pass_name, /* is_after_pass= */ true, graph_in_bad_state_);
FlushVisualizer();
}
// Validate the HGraph if running in debug mode.
if (kIsDebugBuild) {
if (!graph_in_bad_state_) {
GraphChecker checker(graph_, codegen_);
last_seen_graph_size_ = checker.Run(pass_change, last_seen_graph_size_);
if (!checker.IsValid()) {
std::ostringstream stream;
graph_->Dump(stream, codegen_);
LOG(FATAL_WITHOUT_ABORT) << "Error after " << pass_name << "(" << graph_->PrettyMethod()
<< "): " << stream.str();
LOG(FATAL) << "(" << pass_name << "): " << Dumpable<GraphChecker>(checker);
}
}
}
}
static bool IsVerboseMethod(const CompilerOptions& compiler_options, const char* method_name) {
// Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
// empty kStringFilter matching all methods.
if (compiler_options.HasVerboseMethods()) {
return compiler_options.IsVerboseMethod(method_name);
}
// Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
// warning when the string is empty.
constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
return true;
}
return false;
}
HGraph* const graph_;
size_t last_seen_graph_size_;
std::string cached_method_name_;
bool timing_logger_enabled_;
TimingLogger timing_logger_;
DisassemblyInformation disasm_info_;
std::ostringstream visualizer_oss_;
std::ostream* visualizer_output_;
bool visualizer_enabled_;
HGraphVisualizer visualizer_;
CodeGenerator* codegen_;
// Flag to be set by the compiler if the pass failed and the graph is not
// expected to validate.
bool graph_in_bad_state_;
friend PassScope;
DISALLOW_COPY_AND_ASSIGN(PassObserver);
};
class PassScope : public ValueObject {
public:
PassScope(const char *pass_name, PassObserver* pass_observer)
: pass_name_(pass_name),
pass_change_(true), // assume change
pass_observer_(pass_observer) {
pass_observer_->StartPass(pass_name_);
}
void SetPassNotChanged() {
pass_change_ = false;
}
~PassScope() {
pass_observer_->EndPass(pass_name_, pass_change_);
}
private:
const char* const pass_name_;
bool pass_change_;
PassObserver* const pass_observer_;
};
class OptimizingCompiler final : public Compiler {
public:
explicit OptimizingCompiler(const CompilerOptions& compiler_options,
CompiledCodeStorage* storage);
~OptimizingCompiler() override;
bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const override;
CompiledMethod* Compile(const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const override;
CompiledMethod* JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const override;
uintptr_t GetEntryPointOf(ArtMethod* method) const override
REQUIRES_SHARED(Locks::mutator_lock_) {
return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
InstructionSetPointerSize(GetCompilerOptions().GetInstructionSet())));
}
bool JitCompile(Thread* self,
jit::JitCodeCache* code_cache,
jit::JitMemoryRegion* region,
ArtMethod* method,
CompilationKind compilation_kind,
jit::JitLogger* jit_logger)
override
REQUIRES_SHARED(Locks::mutator_lock_);
private:
bool RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
const OptimizationDef definitions[],
size_t length) const {
// Convert definitions to optimization passes.
ArenaVector<HOptimization*> optimizations = ConstructOptimizations(
definitions,
length,
graph->GetAllocator(),
graph,
compilation_stats_.get(),
codegen,
dex_compilation_unit);
DCHECK_EQ(length, optimizations.size());
// Run the optimization passes one by one. Any "depends_on" pass refers back to
// the most recent occurrence of that pass, skipped or executed.
std::bitset<static_cast<size_t>(OptimizationPass::kLast) + 1u> pass_changes;
pass_changes[static_cast<size_t>(OptimizationPass::kNone)] = true;
bool change = false;
for (size_t i = 0; i < length; ++i) {
if (pass_changes[static_cast<size_t>(definitions[i].depends_on)]) {
// Execute the pass and record whether it changed anything.
PassScope scope(optimizations[i]->GetPassName(), pass_observer);
bool pass_change = optimizations[i]->Run();
pass_changes[static_cast<size_t>(definitions[i].pass)] = pass_change;
if (pass_change) {
change = true;
} else {
scope.SetPassNotChanged();
}
} else {
// Skip the pass and record that nothing changed.
pass_changes[static_cast<size_t>(definitions[i].pass)] = false;
}
}
return change;
}
template <size_t length> bool RunOptimizations(
HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
const OptimizationDef (&definitions)[length]) const {
return RunOptimizations(
graph, codegen, dex_compilation_unit, pass_observer, definitions, length);
}
void RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const;
// Create a 'CompiledMethod' for an optimized graph.
CompiledMethod* Emit(ArenaAllocator* allocator,
CodeVectorAllocator* code_allocator,
CodeGenerator* codegen,
bool is_intrinsic,
const dex::CodeItem* item) const;
// Try compiling a method and return the code generator used for
// compiling it.
// This method:
// 1) Builds the graph. Returns null if it failed to build it.
// 2) Transforms the graph to SSA. Returns null if it failed.
// 3) Runs optimizations on the graph, including register allocator.
// 4) Generates code with the `code_allocator` provided.
CodeGenerator* TryCompile(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
CompilationKind compilation_kind,
VariableSizedHandleScope* handles) const;
CodeGenerator* TryCompileIntrinsic(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
VariableSizedHandleScope* handles) const;
bool RunArchOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const;
bool RunBaselineOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const;
std::vector<uint8_t> GenerateJitDebugInfo(const debug::MethodDebugInfo& method_debug_info);
// This must be called before any other function that dumps data to the cfg
void DumpInstructionSetFeaturesToCfg() const;
std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
std::unique_ptr<std::ostream> visualizer_output_;
DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
};
static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
OptimizingCompiler::OptimizingCompiler(const CompilerOptions& compiler_options,
CompiledCodeStorage* storage)
: Compiler(compiler_options, storage, kMaximumCompilationTimeBeforeWarning) {
// Enable C1visualizer output.
const std::string& cfg_file_name = compiler_options.GetDumpCfgFileName();
if (!cfg_file_name.empty()) {
std::ios_base::openmode cfg_file_mode =
compiler_options.GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
DumpInstructionSetFeaturesToCfg();
}
if (compiler_options.GetDumpStats()) {
compilation_stats_.reset(new OptimizingCompilerStats());
}
}
OptimizingCompiler::~OptimizingCompiler() {
if (compilation_stats_.get() != nullptr) {
compilation_stats_->Log();
}
}
void OptimizingCompiler::DumpInstructionSetFeaturesToCfg() const {
const CompilerOptions& compiler_options = GetCompilerOptions();
const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
std::string isa_string =
std::string("isa:") + GetInstructionSetString(features->GetInstructionSet());
std::string features_string = "isa_features:" + features->GetFeatureString();
// It is assumed that visualizer_output_ is empty when calling this function, hence the fake
// compilation block containing the ISA features will be printed at the beginning of the .cfg
// file.
*visualizer_output_
<< HGraphVisualizer::InsertMetaDataAsCompilationBlock(isa_string + ' ' + features_string);
}
bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
const DexFile& dex_file ATTRIBUTE_UNUSED) const {
return true;
}
static bool IsInstructionSetSupported(InstructionSet instruction_set) {
return instruction_set == InstructionSet::kArm
|| instruction_set == InstructionSet::kArm64
|| instruction_set == InstructionSet::kThumb2
|| instruction_set == InstructionSet::kX86
|| instruction_set == InstructionSet::kX86_64;
}
bool OptimizingCompiler::RunBaselineOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const {
switch (codegen->GetCompilerOptions().GetInstructionSet()) {
#if defined(ART_ENABLE_CODEGEN_arm)
case InstructionSet::kThumb2:
case InstructionSet::kArm: {
OptimizationDef arm_optimizations[] = {
OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
arm_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case InstructionSet::kX86: {
OptimizationDef x86_optimizations[] = {
OptDef(OptimizationPass::kPcRelativeFixupsX86),
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
x86_optimizations);
}
#endif
default:
UNUSED(graph);
UNUSED(codegen);
UNUSED(dex_compilation_unit);
UNUSED(pass_observer);
return false;
}
}
bool OptimizingCompiler::RunArchOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const {
switch (codegen->GetCompilerOptions().GetInstructionSet()) {
#if defined(ART_ENABLE_CODEGEN_arm)
case InstructionSet::kThumb2:
case InstructionSet::kArm: {
OptimizationDef arm_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierArm),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
OptDef(OptimizationPass::kScheduling)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
arm_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
case InstructionSet::kArm64: {
OptimizationDef arm64_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierArm64),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kScheduling)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
arm64_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case InstructionSet::kX86: {
OptimizationDef x86_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierX86),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kPcRelativeFixupsX86),
OptDef(OptimizationPass::kX86MemoryOperandGeneration)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
x86_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
case InstructionSet::kX86_64: {
OptimizationDef x86_64_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierX86_64),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kX86MemoryOperandGeneration)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
x86_64_optimizations);
}
#endif
default:
UNUSED(graph);
UNUSED(dex_compilation_unit);
UNUSED(pass_observer);
return false;
}
}
NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
static void AllocateRegisters(HGraph* graph,
CodeGenerator* codegen,
PassObserver* pass_observer,
RegisterAllocator::Strategy strategy,
OptimizingCompilerStats* stats) {
{
PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
pass_observer);
PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions(), stats).Run();
}
// Use local allocator shared by SSA liveness analysis and register allocator.
// (Register allocator creates new objects in the liveness data.)
ScopedArenaAllocator local_allocator(graph->GetArenaStack());
SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
{
PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
liveness.Analyze();
}
{
PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(&local_allocator, codegen, liveness, strategy);
register_allocator->AllocateRegisters();
}
}
// Strip pass name suffix to get optimization name.
static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
size_t pos = pass_name.find(kPassNameSeparator);
return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
}
void OptimizingCompiler::RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const {
const std::vector<std::string>* pass_names = GetCompilerOptions().GetPassesToRun();
if (pass_names != nullptr) {
// If passes were defined on command-line, build the optimization
// passes and run these instead of the built-in optimizations.
// TODO: a way to define depends_on via command-line?
const size_t length = pass_names->size();
std::vector<OptimizationDef> optimizations;
for (const std::string& pass_name : *pass_names) {
std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
optimizations.push_back(OptDef(OptimizationPassByName(opt_name), pass_name.c_str()));
}
RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
optimizations.data(),
length);
return;
}
OptimizationDef optimizations[] = {
// Initial optimizations.
OptDef(OptimizationPass::kConstantFolding),
OptDef(OptimizationPass::kInstructionSimplifier),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$initial"),
// Inlining.
OptDef(OptimizationPass::kInliner),
// Simplification (if inlining occurred, or if we analyzed the invoke as "always throwing").
OptDef(OptimizationPass::kConstantFolding,
"constant_folding$after_inlining",
OptimizationPass::kInliner),
OptDef(OptimizationPass::kInstructionSimplifier,
"instruction_simplifier$after_inlining",
OptimizationPass::kInliner),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$after_inlining",
OptimizationPass::kInliner),
// GVN.
OptDef(OptimizationPass::kSideEffectsAnalysis,
"side_effects$before_gvn"),
OptDef(OptimizationPass::kGlobalValueNumbering),
// Simplification (TODO: only if GVN occurred).
OptDef(OptimizationPass::kSelectGenerator),
OptDef(OptimizationPass::kAggressiveConstantFolding,
"constant_folding$after_gvn"),
OptDef(OptimizationPass::kInstructionSimplifier,
"instruction_simplifier$after_gvn"),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$after_gvn"),
// High-level optimizations.
OptDef(OptimizationPass::kSideEffectsAnalysis,
"side_effects$before_licm"),
OptDef(OptimizationPass::kInvariantCodeMotion),
OptDef(OptimizationPass::kInductionVarAnalysis),
OptDef(OptimizationPass::kBoundsCheckElimination),
OptDef(OptimizationPass::kLoopOptimization),
// Simplification.
OptDef(OptimizationPass::kConstantFolding,
"constant_folding$after_loop_opt"),
OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
"instruction_simplifier$after_loop_opt"),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$after_loop_opt"),
// Other high-level optimizations.
OptDef(OptimizationPass::kLoadStoreElimination),
OptDef(OptimizationPass::kCHAGuardOptimization),
OptDef(OptimizationPass::kCodeSinking),
// Simplification.
OptDef(OptimizationPass::kConstantFolding,
"constant_folding$before_codegen"),
// The codegen has a few assumptions that only the instruction simplifier
// can satisfy. For example, the code generator does not expect to see a
// HTypeConversion from a type to the same type.
OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
"instruction_simplifier$before_codegen"),
// Simplification may result in dead code that should be removed prior to
// code generation.
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$before_codegen"),
// Eliminate constructor fences after code sinking to avoid
// complicated sinking logic to split a fence with many inputs.
OptDef(OptimizationPass::kConstructorFenceRedundancyElimination)
};
RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
optimizations);
RunArchOptimizations(graph, codegen, dex_compilation_unit, pass_observer);
}
static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
codegen->EmitLinkerPatches(&linker_patches);
// Sort patches by literal offset. Required for .oat_patches encoding.
std::sort(linker_patches.begin(), linker_patches.end(),
[](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
return lhs.LiteralOffset() < rhs.LiteralOffset();
});
return linker_patches;
}
CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
CodeVectorAllocator* code_allocator,
CodeGenerator* codegen,
bool is_intrinsic,
const dex::CodeItem* code_item_for_osr_check) const {
ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item_for_osr_check);
CompiledCodeStorage* storage = GetCompiledCodeStorage();
CompiledMethod* compiled_method = storage->CreateCompiledMethod(
codegen->GetInstructionSet(),
code_allocator->GetMemory(),
ArrayRef<const uint8_t>(stack_map),
ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
ArrayRef<const linker::LinkerPatch>(linker_patches),
is_intrinsic);
for (const linker::LinkerPatch& patch : linker_patches) {
if (codegen->NeedsThunkCode(patch) && storage->GetThunkCode(patch).empty()) {
ArenaVector<uint8_t> code(allocator->Adapter());
std::string debug_name;
codegen->EmitThunkCode(patch, &code, &debug_name);
storage->SetThunkCode(patch, ArrayRef<const uint8_t>(code), debug_name);
}
}
return compiled_method;
}
CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
CompilationKind compilation_kind,
VariableSizedHandleScope* handles) const {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptBytecodeCompilation);
const CompilerOptions& compiler_options = GetCompilerOptions();
InstructionSet instruction_set = compiler_options.GetInstructionSet();
const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
const dex::CodeItem* code_item = dex_compilation_unit.GetCodeItem();
// Always use the Thumb-2 assembler: some runtime functionality
// (like implicit stack overflow checks) assume Thumb-2.
DCHECK_NE(instruction_set, InstructionSet::kArm);
// Do not attempt to compile on architectures we do not support.
if (!IsInstructionSetSupported(instruction_set)) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledUnsupportedIsa);
return nullptr;
}
if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledPathological);
return nullptr;
}
// Implementation of the space filter: do not compile a code item whose size in
// code units is bigger than 128.
static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
&& (CodeItemInstructionAccessor(dex_file, code_item).InsnsSizeInCodeUnits() >
kSpaceFilterOptimizingThreshold)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledSpaceFilter);
return nullptr;
}
CodeItemDebugInfoAccessor code_item_accessor(dex_file, code_item, method_idx);
bool dead_reference_safe;
// For AOT compilation, we may not get a method, for example if its class is erroneous,
// possibly due to an unavailable superclass. JIT should always have a method.
DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
if (method != nullptr) {
const dex::ClassDef* containing_class;
{
ScopedObjectAccess soa(Thread::Current());
containing_class = &method->GetClassDef();
}
// MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
// is currently rarely true.
dead_reference_safe =
annotations::HasDeadReferenceSafeAnnotation(dex_file, *containing_class)
&& !annotations::MethodContainsRSensitiveAccess(dex_file, *containing_class, method_idx);
} else {
// If we could not resolve the class, conservatively assume it's dead-reference unsafe.
dead_reference_safe = false;
}
HGraph* graph = new (allocator) HGraph(
allocator,
arena_stack,
handles,
dex_file,
method_idx,
compiler_options.GetInstructionSet(),
kInvalidInvokeType,
dead_reference_safe,
compiler_options.GetDebuggable(),
compilation_kind);
if (method != nullptr) {
graph->SetArtMethod(method);
}
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
ProfilingInfo* info = jit->GetCodeCache()->GetProfilingInfo(method, Thread::Current());
DCHECK_IMPLIES(compilation_kind == CompilationKind::kBaseline, info != nullptr)
<< "Compiling a method baseline should always have a ProfilingInfo";
graph->SetProfilingInfo(info);
}
std::unique_ptr<CodeGenerator> codegen(
CodeGenerator::Create(graph,
compiler_options,
compilation_stats_.get()));
if (codegen.get() == nullptr) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledNoCodegen);
return nullptr;
}
codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
PassObserver pass_observer(graph,
codegen.get(),
visualizer_output_.get(),
compiler_options);
{
VLOG(compiler) << "Building " << pass_observer.GetMethodName();
PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
HGraphBuilder builder(graph,
code_item_accessor,
&dex_compilation_unit,
&dex_compilation_unit,
codegen.get(),
compilation_stats_.get());
GraphAnalysisResult result = builder.BuildGraph();
if (result != kAnalysisSuccess) {
switch (result) {
case kAnalysisSkipped: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledSkipped);
break;
}
case kAnalysisInvalidBytecode: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledInvalidBytecode);
break;
}
case kAnalysisFailThrowCatchLoop: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledThrowCatchLoop);
break;
}
case kAnalysisFailAmbiguousArrayOp: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
break;
}
case kAnalysisFailIrreducibleLoopAndStringInit: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledIrreducibleLoopAndStringInit);
break;
}
case kAnalysisFailPhiEquivalentInOsr: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledPhiEquivalentInOsr);
break;
}
case kAnalysisSuccess:
UNREACHABLE();
}
pass_observer.SetGraphInBadState();
return nullptr;
}
}
if (compilation_kind == CompilationKind::kBaseline) {
RunBaselineOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
} else {
RunOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
WriteBarrierElimination(graph, compilation_stats_.get()).Run();
}
RegisterAllocator::Strategy regalloc_strategy =
compiler_options.GetRegisterAllocationStrategy();
AllocateRegisters(graph,
codegen.get(),
&pass_observer,
regalloc_strategy,
compilation_stats_.get());
codegen->Compile(code_allocator);
pass_observer.DumpDisassembly();
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledBytecode);
return codegen.release();
}
CodeGenerator* OptimizingCompiler::TryCompileIntrinsic(
ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
VariableSizedHandleScope* handles) const {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptIntrinsicCompilation);
const CompilerOptions& compiler_options = GetCompilerOptions();
InstructionSet instruction_set = compiler_options.GetInstructionSet();
const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
// Always use the Thumb-2 assembler: some runtime functionality
// (like implicit stack overflow checks) assume Thumb-2.
DCHECK_NE(instruction_set, InstructionSet::kArm);
// Do not attempt to compile on architectures we do not support.
if (!IsInstructionSetSupported(instruction_set)) {
return nullptr;
}
HGraph* graph = new (allocator) HGraph(
allocator,
arena_stack,
handles,
dex_file,
method_idx,
compiler_options.GetInstructionSet(),
kInvalidInvokeType,
/* dead_reference_safe= */ true, // Intrinsics don't affect dead reference safety.
compiler_options.GetDebuggable(),
CompilationKind::kOptimized);
DCHECK(Runtime::Current()->IsAotCompiler());
DCHECK(method != nullptr);
graph->SetArtMethod(method);
std::unique_ptr<CodeGenerator> codegen(
CodeGenerator::Create(graph,
compiler_options,
compilation_stats_.get()));
if (codegen.get() == nullptr) {
return nullptr;
}
codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
PassObserver pass_observer(graph,
codegen.get(),
visualizer_output_.get(),
compiler_options);
{
VLOG(compiler) << "Building intrinsic graph " << pass_observer.GetMethodName();
PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
HGraphBuilder builder(graph,
CodeItemDebugInfoAccessor(), // Null code item.
&dex_compilation_unit,
&dex_compilation_unit,
codegen.get(),
compilation_stats_.get());
builder.BuildIntrinsicGraph(method);
}
OptimizationDef optimizations[] = {
// The codegen has a few assumptions that only the instruction simplifier
// can satisfy.
OptDef(OptimizationPass::kInstructionSimplifier),
};
RunOptimizations(graph,
codegen.get(),
dex_compilation_unit,
&pass_observer,
optimizations);
RunArchOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
{
PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
WriteBarrierElimination(graph, compilation_stats_.get()).Run();
}
AllocateRegisters(graph,
codegen.get(),
&pass_observer,
compiler_options.GetRegisterAllocationStrategy(),
compilation_stats_.get());
if (!codegen->IsLeafMethod()) {
VLOG(compiler) << "Intrinsic method is not leaf: " << method->GetIntrinsic()
<< " " << graph->PrettyMethod();
return nullptr;
}
codegen->Compile(code_allocator);
pass_observer.DumpDisassembly();
VLOG(compiler) << "Compiled intrinsic: " << method->GetIntrinsic()
<< " " << graph->PrettyMethod();
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledIntrinsic);
return codegen.release();
}
CompiledMethod* OptimizingCompiler::Compile(const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> jclass_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const {
const CompilerOptions& compiler_options = GetCompilerOptions();
DCHECK(compiler_options.IsAotCompiler());
CompiledMethod* compiled_method = nullptr;
Runtime* runtime = Runtime::Current();
DCHECK(runtime->IsAotCompiler());
ArenaAllocator allocator(runtime->GetArenaPool());
ArenaStack arena_stack(runtime->GetArenaPool());
CodeVectorAllocator code_allocator(&allocator);
std::unique_ptr<CodeGenerator> codegen;
bool compiled_intrinsic = false;
{
ScopedObjectAccess soa(Thread::Current());
ArtMethod* method =
runtime->GetClassLinker()->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
method_idx, dex_cache, jclass_loader, /*referrer=*/ nullptr, invoke_type);
DCHECK_EQ(method == nullptr, soa.Self()->IsExceptionPending());
soa.Self()->ClearException(); // Suppress exception if any.
VariableSizedHandleScope handles(soa.Self());
Handle<mirror::Class> compiling_class =
handles.NewHandle(method != nullptr ? method->GetDeclaringClass() : nullptr);
DexCompilationUnit dex_compilation_unit(
jclass_loader,
runtime->GetClassLinker(),
dex_file,
code_item,
class_def_idx,
method_idx,
access_flags,
/*verified_method=*/ nullptr, // Not needed by the Optimizing compiler.
dex_cache,
compiling_class);
// All signature polymorphic methods are native.
DCHECK(method == nullptr || !method->IsSignaturePolymorphic());
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
// Try to compile a fully intrinsified implementation.
if (method != nullptr && UNLIKELY(method->IsIntrinsic())) {
DCHECK(compiler_options.IsBootImage());
codegen.reset(
TryCompileIntrinsic(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
&handles));
if (codegen != nullptr) {
compiled_intrinsic = true;
}
}
if (codegen == nullptr) {
codegen.reset(
TryCompile(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
compiler_options.IsBaseline()
? CompilationKind::kBaseline
: CompilationKind::kOptimized,
&handles));
}
}
if (codegen.get() != nullptr) {
compiled_method = Emit(&allocator,
&code_allocator,
codegen.get(),
compiled_intrinsic,
compiled_intrinsic ? nullptr : code_item);
if (kArenaAllocatorCountAllocations) {
codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
MemStats mem_stats(allocator.GetMemStats());
MemStats peak_stats(arena_stack.GetPeakStats());
LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
<< dex_file.PrettyMethod(method_idx)
<< "\n" << Dumpable<MemStats>(mem_stats)
<< "\n" << Dumpable<MemStats>(peak_stats);
}
}
}
if (kIsDebugBuild &&
compiler_options.CompileArtTest() &&
IsInstructionSetSupported(compiler_options.GetInstructionSet())) {
// For testing purposes, we put a special marker on method names
// that should be compiled with this compiler (when the
// instruction set is supported). This makes sure we're not
// regressing.
std::string method_name = dex_file.PrettyMethod(method_idx);
bool shouldCompile = method_name.find("$opt$") != std::string::npos;
DCHECK_IMPLIES(compiled_method == nullptr, !shouldCompile) << "Didn't compile " << method_name;
}
return compiled_method;
}
static ScopedArenaVector<uint8_t> CreateJniStackMap(ScopedArenaAllocator* allocator,
const JniCompiledMethod& jni_compiled_method,
size_t code_size,
bool debuggable) {
// StackMapStream is quite large, so allocate it using the ScopedArenaAllocator
// to stay clear of the frame size limit.
std::unique_ptr<StackMapStream> stack_map_stream(
new (allocator) StackMapStream(allocator, jni_compiled_method.GetInstructionSet()));
stack_map_stream->BeginMethod(jni_compiled_method.GetFrameSize(),
jni_compiled_method.GetCoreSpillMask(),
jni_compiled_method.GetFpSpillMask(),
/* num_dex_registers= */ 0,
/* baseline= */ false,
debuggable);
stack_map_stream->EndMethod(code_size);
return stack_map_stream->Encode();
}
CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const {
Runtime* runtime = Runtime::Current();
ArenaAllocator allocator(runtime->GetArenaPool());
ArenaStack arena_stack(runtime->GetArenaPool());
const CompilerOptions& compiler_options = GetCompilerOptions();
if (compiler_options.IsBootImage()) {
ScopedObjectAccess soa(Thread::Current());
ArtMethod* method = runtime->GetClassLinker()->LookupResolvedMethod(
method_idx, dex_cache.Get(), /*class_loader=*/ nullptr);
// Try to compile a fully intrinsified implementation. Do not try to do this for
// signature polymorphic methods as the InstructionBuilder cannot handle them;
// and it would be useless as they always have a slow path for type conversions.
if (method != nullptr && UNLIKELY(method->IsIntrinsic()) && !method->IsSignaturePolymorphic()) {
VariableSizedHandleScope handles(soa.Self());
ScopedNullHandle<mirror::ClassLoader> class_loader; // null means boot class path loader.
Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
DexCompilationUnit dex_compilation_unit(
class_loader,
runtime->GetClassLinker(),
dex_file,
/*code_item=*/ nullptr,
/*class_def_idx=*/ DexFile::kDexNoIndex16,
method_idx,
access_flags,
/*verified_method=*/ nullptr,
dex_cache,
compiling_class);
CodeVectorAllocator code_allocator(&allocator);
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
std::unique_ptr<CodeGenerator> codegen(
TryCompileIntrinsic(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
&handles));
if (codegen != nullptr) {
return Emit(&allocator,
&code_allocator,
codegen.get(),
/*is_intrinsic=*/ true,
/*item=*/ nullptr);
}
}
}
JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
compiler_options, access_flags, method_idx, dex_file, &allocator);
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledNativeStub);
ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
ScopedArenaVector<uint8_t> stack_map =
CreateJniStackMap(&stack_map_allocator,
jni_compiled_method,
jni_compiled_method.GetCode().size(),
compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
return GetCompiledCodeStorage()->CreateCompiledMethod(
jni_compiled_method.GetInstructionSet(),
jni_compiled_method.GetCode(),
ArrayRef<const uint8_t>(stack_map),
jni_compiled_method.GetCfi(),
/*patches=*/ ArrayRef<const linker::LinkerPatch>(),
/*is_intrinsic=*/ false);
}
Compiler* CreateOptimizingCompiler(const CompilerOptions& compiler_options,
CompiledCodeStorage* storage) {
return new OptimizingCompiler(compiler_options, storage);
}
bool EncodeArtMethodInInlineInfo(ArtMethod* method ATTRIBUTE_UNUSED) {
// Note: the runtime is null only for unit testing.
return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
}
bool OptimizingCompiler::JitCompile(Thread* self,
jit::JitCodeCache* code_cache,
jit::JitMemoryRegion* region,
ArtMethod* method,
CompilationKind compilation_kind,
jit::JitLogger* jit_logger) {
const CompilerOptions& compiler_options = GetCompilerOptions();
DCHECK(compiler_options.IsJitCompiler());
DCHECK_EQ(compiler_options.IsJitCompilerForSharedCode(), code_cache->IsSharedRegion(*region));
StackHandleScope<3> hs(self);
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
method->GetDeclaringClass()->GetClassLoader()));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
DCHECK(method->IsCompilable());
const DexFile* dex_file = method->GetDexFile();
const uint16_t class_def_idx = method->GetClassDefIndex();
const dex::CodeItem* code_item = method->GetCodeItem();
const uint32_t method_idx = method->GetDexMethodIndex();
const uint32_t access_flags = method->GetAccessFlags();
Runtime* runtime = Runtime::Current();
ArenaAllocator allocator(runtime->GetJitArenaPool());
if (UNLIKELY(method->IsNative())) {
// Use GenericJniTrampoline for critical native methods in debuggable runtimes. We don't
// support calling method entry / exit hooks for critical native methods yet.
// TODO(mythria): Add support for calling method entry / exit hooks in JITed stubs for critical
// native methods too.
if (compiler_options.GetDebuggable() && method->IsCriticalNative()) {
DCHECK(compiler_options.IsJitCompiler());
return false;
}
// Java debuggable runtimes should set compiler options to debuggable, so that we either
// generate method entry / exit hooks or skip JITing. For critical native methods we don't
// generate method entry / exit hooks so we shouldn't JIT them in debuggable runtimes.
DCHECK_IMPLIES(method->IsCriticalNative(), !runtime->IsJavaDebuggable());
JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
compiler_options, access_flags, method_idx, *dex_file, &allocator);
std::vector<Handle<mirror::Object>> roots;
ArenaSet<ArtMethod*, std::less<ArtMethod*>> cha_single_implementation_list(
allocator.Adapter(kArenaAllocCHA));
ArenaStack arena_stack(runtime->GetJitArenaPool());
// StackMapStream is large and it does not fit into this frame, so we need helper method.
ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
ScopedArenaVector<uint8_t> stack_map =
CreateJniStackMap(&stack_map_allocator,
jni_compiled_method,
jni_compiled_method.GetCode().size(),
compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
ArrayRef<const uint8_t> reserved_code;
ArrayRef<const uint8_t> reserved_data;
if (!code_cache->Reserve(self,
region,
jni_compiled_method.GetCode().size(),
stack_map.size(),
/* number_of_roots= */ 0,
method,
/*out*/ &reserved_code,
/*out*/ &reserved_data)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
return false;
}
const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
// Add debug info after we know the code location but before we update entry-point.
std::vector<uint8_t> debug_info;
if (compiler_options.GenerateAnyDebugInfo()) {
debug::MethodDebugInfo info = {};
// Simpleperf relies on art_jni_trampoline to detect jni methods.
info.custom_name = "art_jni_trampoline";
info.dex_file = dex_file;
info.class_def_index = class_def_idx;
info.dex_method_index = method_idx;
info.access_flags = access_flags;
info.code_item = code_item;
info.isa = jni_compiled_method.GetInstructionSet();
info.deduped = false;
info.is_native_debuggable = compiler_options.GetNativeDebuggable();
info.is_optimized = true;
info.is_code_address_text_relative = false;
info.code_address = reinterpret_cast<uintptr_t>(code);
info.code_size = jni_compiled_method.GetCode().size();
info.frame_size_in_bytes = jni_compiled_method.GetFrameSize();
info.code_info = nullptr;
info.cfi = jni_compiled_method.GetCfi();
debug_info = GenerateJitDebugInfo(info);
}
if (!code_cache->Commit(self,
region,
method,
reserved_code,
jni_compiled_method.GetCode(),
reserved_data,
roots,
ArrayRef<const uint8_t>(stack_map),
debug_info,
/* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
compilation_kind,
/* has_should_deoptimize_flag= */ false,
cha_single_implementation_list)) {
code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
return false;
}
Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
if (jit_logger != nullptr) {
jit_logger->WriteLog(code, jni_compiled_method.GetCode().size(), method);
}
return true;
}
ArenaStack arena_stack(runtime->GetJitArenaPool());
CodeVectorAllocator code_allocator(&allocator);
VariableSizedHandleScope handles(self);
std::unique_ptr<CodeGenerator> codegen;
{
Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
DexCompilationUnit dex_compilation_unit(
class_loader,
runtime->GetClassLinker(),
*dex_file,
code_item,
class_def_idx,
method_idx,
access_flags,
/*verified_method=*/ nullptr,
dex_cache,
compiling_class);
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(self, ThreadState::kNative);
codegen.reset(
TryCompile(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
compilation_kind,
&handles));
if (codegen.get() == nullptr) {
return false;
}
}
ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item);
ArrayRef<const uint8_t> reserved_code;
ArrayRef<const uint8_t> reserved_data;
if (!code_cache->Reserve(self,
region,
code_allocator.GetMemory().size(),
stack_map.size(),
/*number_of_roots=*/codegen->GetNumberOfJitRoots(),
method,
/*out*/ &reserved_code,
/*out*/ &reserved_data)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
return false;
}
const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
const uint8_t* roots_data = reserved_data.data();
std::vector<Handle<mirror::Object>> roots;
codegen->EmitJitRoots(code_allocator.GetData(), roots_data, &roots);
// The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
DCHECK(std::all_of(roots.begin(),
roots.end(),
[&handles](Handle<mirror::Object> root){
return handles.Contains(root.GetReference());
}));
// Add debug info after we know the code location but before we update entry-point.
std::vector<uint8_t> debug_info;
if (compiler_options.GenerateAnyDebugInfo()) {
debug::MethodDebugInfo info = {};
DCHECK(info.custom_name.empty());
info.dex_file = dex_file;
info.class_def_index = class_def_idx;
info.dex_method_index = method_idx;
info.access_flags = access_flags;
info.code_item = code_item;
info.isa = codegen->GetInstructionSet();
info.deduped = false;
info.is_native_debuggable = compiler_options.GetNativeDebuggable();
info.is_optimized = true;
info.is_code_address_text_relative = false;
info.code_address = reinterpret_cast<uintptr_t>(code);
info.code_size = code_allocator.GetMemory().size();
info.frame_size_in_bytes = codegen->GetFrameSize();
info.code_info = stack_map.size() == 0 ? nullptr : stack_map.data();
info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
debug_info = GenerateJitDebugInfo(info);
}
if (!code_cache->Commit(self,
region,
method,
reserved_code,
code_allocator.GetMemory(),
reserved_data,
roots,
ArrayRef<const uint8_t>(stack_map),
debug_info,
/* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
compilation_kind,
codegen->GetGraph()->HasShouldDeoptimizeFlag(),
codegen->GetGraph()->GetCHASingleImplementationList())) {
code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
return false;
}
Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
if (jit_logger != nullptr) {
jit_logger->WriteLog(code, code_allocator.GetMemory().size(), method);
}
if (kArenaAllocatorCountAllocations) {
codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
MemStats mem_stats(allocator.GetMemStats());
MemStats peak_stats(arena_stack.GetPeakStats());
LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
<< dex_file->PrettyMethod(method_idx)
<< "\n" << Dumpable<MemStats>(mem_stats)
<< "\n" << Dumpable<MemStats>(peak_stats);
}
}
return true;
}
std::vector<uint8_t> OptimizingCompiler::GenerateJitDebugInfo(const debug::MethodDebugInfo& info) {
const CompilerOptions& compiler_options = GetCompilerOptions();
if (compiler_options.GenerateAnyDebugInfo()) {
// If both flags are passed, generate full debug info.
const bool mini_debug_info = !compiler_options.GetGenerateDebugInfo();
// Create entry for the single method that we just compiled.
InstructionSet isa = compiler_options.GetInstructionSet();
const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
return debug::MakeElfFileForJIT(isa, features, mini_debug_info, info);
}
return std::vector<uint8_t>();
}
} // namespace art
|