File: scheduler.h

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (575 lines) | stat: -rw-r--r-- 22,988 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
#define ART_COMPILER_OPTIMIZING_SCHEDULER_H_

#include <fstream>

#include "base/macros.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "base/time_utils.h"
#include "code_generator.h"
#include "load_store_analysis.h"
#include "nodes.h"
#include "optimization.h"

namespace art HIDDEN {

// General description of instruction scheduling.
//
// This pass tries to improve the quality of the generated code by reordering
// instructions in the graph to avoid execution delays caused by execution
// dependencies.
// Currently, scheduling is performed at the block level, so no `HInstruction`
// ever leaves its block in this pass.
//
// The scheduling process iterates through blocks in the graph. For blocks that
// we can and want to schedule:
// 1) Build a dependency graph for instructions.
//    It includes data dependencies (inputs/uses), but also environment
//    dependencies and side-effect dependencies.
// 2) Schedule the dependency graph.
//    This is a topological sort of the dependency graph, using heuristics to
//    decide what node to scheduler first when there are multiple candidates.
//
// A few factors impacting the quality of the scheduling are:
// - The heuristics used to decide what node to schedule in the topological sort
//   when there are multiple valid candidates. There is a wide range of
//   complexity possible here, going from a simple model only considering
//   latencies, to a super detailed CPU pipeline model.
// - Fewer dependencies in the dependency graph give more freedom for the
//   scheduling heuristics. For example de-aliasing can allow possibilities for
//   reordering of memory accesses.
// - The level of abstraction of the IR. It is easier to evaluate scheduling for
//   IRs that translate to a single assembly instruction than for IRs
//   that generate multiple assembly instructions or generate different code
//   depending on properties of the IR.
// - Scheduling is performed before register allocation, it is not aware of the
//   impact of moving instructions on register allocation.
//
//
// The scheduling code uses the terms predecessors, successors, and dependencies.
// This can be confusing at times, so here are clarifications.
// These terms are used from the point of view of the program dependency graph. So
// the inputs of an instruction are part of its dependencies, and hence part its
// predecessors. So the uses of an instruction are (part of) its successors.
// (Side-effect dependencies can yield predecessors or successors that are not
// inputs or uses.)
//
// Here is a trivial example. For the Java code:
//
//    int a = 1 + 2;
//
// we would have the instructions
//
//    i1 HIntConstant 1
//    i2 HIntConstant 2
//    i3 HAdd [i1,i2]
//
// `i1` and `i2` are predecessors of `i3`.
// `i3` is a successor of `i1` and a successor of `i2`.
// In a scheduling graph for this code we would have three nodes `n1`, `n2`,
// and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
// Conceptually the program dependency graph for this would contain two edges
//
//    n1 -> n3
//    n2 -> n3
//
// Since we schedule backwards (starting from the last instruction in each basic
// block), the implementation of nodes keeps a list of pointers their
// predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
//
// Node dependencies are also referred to from the program dependency graph
// point of view: we say that node `B` immediately depends on `A` if there is an
// edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
// `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
// `n2`.
// Since nodes in the scheduling graph keep a list of their predecessors, node
// `B` will have a pointer to its predecessor `A`.
// As we schedule backwards, `B` will be selected for scheduling before `A` is.
//
// So the scheduling for the example above could happen as follow
//
//    |---------------------------+------------------------|
//    | candidates for scheduling | instructions scheduled |
//    | --------------------------+------------------------|
//
// The only node without successors is `n3`, so it is the only initial
// candidate.
//
//    | n3                        | (none)                 |
//
// We schedule `n3` as the last (and only) instruction. All its predecessors
// that do not have any unscheduled successors become candidate. That is, `n1`
// and `n2` become candidates.
//
//    | n1, n2                    | n3                     |
//
// One of the candidates is selected. In practice this is where scheduling
// heuristics kick in, to decide which of the candidates should be selected.
// In this example, let it be `n1`. It is scheduled before previously scheduled
// nodes (in program order). There are no other nodes to add to the list of
// candidates.
//
//    | n2                        | n1                     |
//    |                           | n3                     |
//
// The only candidate available for scheduling is `n2`. Schedule it before
// (in program order) the previously scheduled nodes.
//
//    | (none)                    | n2                     |
//    |                           | n1                     |
//    |                           | n3                     |
//    |---------------------------+------------------------|
//
// So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
// In this trivial example, it does not matter which of `i1` and `i2` is
// scheduled first since they are constants. However the same process would
// apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).

// Set to true to have instruction scheduling dump scheduling graphs to the file
// `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
static constexpr bool kDumpDotSchedulingGraphs = false;

// Typically used as a default instruction latency.
static constexpr uint32_t kGenericInstructionLatency = 1;

class HScheduler;

/**
 * A node representing an `HInstruction` in the `SchedulingGraph`.
 */
class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> {
 public:
  SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier)
      : latency_(0),
        internal_latency_(0),
        critical_path_(0),
        instruction_(instr),
        is_scheduling_barrier_(is_scheduling_barrier),
        data_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
        other_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
        num_unscheduled_successors_(0) {
    data_predecessors_.reserve(kPreallocatedPredecessors);
  }

  void AddDataPredecessor(SchedulingNode* predecessor) {
    // Check whether the predecessor has been added earlier.
    if (HasDataDependency(predecessor)) {
      return;
    }
    data_predecessors_.push_back(predecessor);
    predecessor->num_unscheduled_successors_++;
  }

  const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const {
    return data_predecessors_;
  }

  void AddOtherPredecessor(SchedulingNode* predecessor) {
    // Check whether the predecessor has been added earlier.
    // As an optimization of the scheduling graph, we don't need to create another dependency if
    // there is a data dependency between scheduling nodes.
    if (HasOtherDependency(predecessor) || HasDataDependency(predecessor)) {
      return;
    }
    other_predecessors_.push_back(predecessor);
    predecessor->num_unscheduled_successors_++;
  }

  const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const {
    return other_predecessors_;
  }

  void DecrementNumberOfUnscheduledSuccessors() {
    num_unscheduled_successors_--;
  }

  void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
    critical_path_ = std::max(critical_path_, other_critical_path);
  }

  bool HasUnscheduledSuccessors() const {
    return num_unscheduled_successors_ != 0;
  }

  HInstruction* GetInstruction() const { return instruction_; }
  uint32_t GetLatency() const { return latency_; }
  void SetLatency(uint32_t latency) { latency_ = latency; }
  uint32_t GetInternalLatency() const { return internal_latency_; }
  void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
  uint32_t GetCriticalPath() const { return critical_path_; }
  bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }

  bool HasDataDependency(const SchedulingNode* node) const {
    return ContainsElement(data_predecessors_, node);
  }

  bool HasOtherDependency(const SchedulingNode* node) const {
    return ContainsElement(other_predecessors_, node);
  }

 private:
  // The latency of this node. It represents the latency between the moment the
  // last instruction for this node has executed to the moment the result
  // produced by this node is available to users.
  uint32_t latency_;
  // This represents the time spent *within* the generated code for this node.
  // It should be zero for nodes that only generate a single instruction.
  uint32_t internal_latency_;

  // The critical path from this instruction to the end of scheduling. It is
  // used by the scheduling heuristics to measure the priority of this instruction.
  // It is defined as
  //     critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
  // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
  // `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
  uint32_t critical_path_;

  // The instruction that this node represents.
  HInstruction* const instruction_;

  // If a node is scheduling barrier, other nodes cannot be scheduled before it.
  const bool is_scheduling_barrier_;

  // The lists of predecessors. They cannot be scheduled before this node. Once
  // this node is scheduled, we check whether any of its predecessors has become a
  // valid candidate for scheduling.
  // Predecessors in `data_predecessors_` are data dependencies. Those in
  // `other_predecessors_` contain side-effect dependencies, environment
  // dependencies, and scheduling barrier dependencies.
  ScopedArenaVector<SchedulingNode*> data_predecessors_;
  ScopedArenaVector<SchedulingNode*> other_predecessors_;

  // The number of unscheduled successors for this node. This number is
  // decremented as successors are scheduled. When it reaches zero this node
  // becomes a valid candidate to schedule.
  uint32_t num_unscheduled_successors_;

  static constexpr size_t kPreallocatedPredecessors = 4;
};

/*
 * Provide analysis of instruction dependencies (side effects) which are not in a form of explicit
 * def-use data dependencies.
 */
class SideEffectDependencyAnalysis {
 public:
  explicit SideEffectDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
      : memory_dependency_analysis_(heap_location_collector) {}

  bool HasSideEffectDependency(HInstruction* instr1, HInstruction* instr2) const {
    if (memory_dependency_analysis_.HasMemoryDependency(instr1, instr2)) {
      return true;
    }

    // Even if above memory dependency check has passed, it is still necessary to
    // check dependencies between instructions that can throw and instructions
    // that write to memory.
    if (HasExceptionDependency(instr1, instr2)) {
      return true;
    }

    return false;
  }

 private:
  static bool HasExceptionDependency(const HInstruction* instr1, const HInstruction* instr2);
  static bool HasReorderingDependency(const HInstruction* instr1, const HInstruction* instr2);

  /*
   * Memory dependency analysis of instructions based on their memory side effects
   * and heap location information from the LCA pass if it is provided.
   */
  class MemoryDependencyAnalysis {
   public:
    explicit MemoryDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
        : heap_location_collector_(heap_location_collector) {}

    bool HasMemoryDependency(HInstruction* instr1, HInstruction* instr2) const;

   private:
    bool ArrayAccessMayAlias(HInstruction* instr1, HInstruction* instr2) const;
    bool FieldAccessMayAlias(const HInstruction* instr1, const HInstruction* instr2) const;
    size_t ArrayAccessHeapLocation(HInstruction* instruction) const;
    size_t FieldAccessHeapLocation(const HInstruction* instruction) const;

    const HeapLocationCollector* const heap_location_collector_;
  };

  MemoryDependencyAnalysis memory_dependency_analysis_;
};

/*
 * Directed acyclic graph for scheduling.
 */
class SchedulingGraph : public ValueObject {
 public:
  SchedulingGraph(ScopedArenaAllocator* allocator,
                  const HeapLocationCollector* heap_location_collector)
      : allocator_(allocator),
        contains_scheduling_barrier_(false),
        nodes_map_(allocator_->Adapter(kArenaAllocScheduler)),
        side_effect_dependency_analysis_(heap_location_collector) {}

  SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
    std::unique_ptr<SchedulingNode> node(
        new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier));
    SchedulingNode* result = node.get();
    nodes_map_.insert(std::make_pair(instr, std::move(node)));
    contains_scheduling_barrier_ |= is_scheduling_barrier;
    AddDependencies(result, is_scheduling_barrier);
    return result;
  }

  SchedulingNode* GetNode(const HInstruction* instr) const {
    auto it = nodes_map_.find(instr);
    if (it == nodes_map_.end()) {
      return nullptr;
    } else {
      return it->second.get();
    }
  }

  size_t Size() const {
    return nodes_map_.size();
  }

  // Dump the scheduling graph, in dot file format, appending it to the file
  // `scheduling_graphs.dot`.
  void DumpAsDotGraph(const std::string& description,
                      const ScopedArenaVector<SchedulingNode*>& initial_candidates);

 protected:
  void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
  void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
    AddDependency(node, dependency, /*is_data_dependency*/true);
  }
  void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
    AddDependency(node, dependency, /*is_data_dependency*/false);
  }

  // Analyze whether the scheduling node has cross-iteration dependencies which mean it uses
  // values defined on the previous iteration.
  //
  // Supported cases:
  //
  //   L:
  //     v2 = loop_head_phi(v1)
  //     instr1(v2)
  //     v1 = instr2
  //     goto L
  //
  // In such cases moving instr2 before instr1 creates intersecting live ranges
  // of v1 and v2. As a result a separate register is needed to keep the value
  // defined by instr2 which is only used on the next iteration.
  // If instr2 is not moved, no additional register is needed. The register
  // used by instr1 is reused.
  // To prevent such a situation a "other" dependency between instr1 and instr2 must be set.
  void AddCrossIterationDependencies(SchedulingNode* node);

  // Add dependencies nodes for the given `SchedulingNode`: inputs, environments, and side-effects.
  void AddDependencies(SchedulingNode* node, bool is_scheduling_barrier = false);

  ScopedArenaAllocator* const allocator_;
  bool contains_scheduling_barrier_;
  ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_;
  SideEffectDependencyAnalysis side_effect_dependency_analysis_;
};

/*
 * The visitors derived from this base class are used by schedulers to evaluate
 * the latencies of `HInstruction`s.
 */
class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
 public:
  // This class and its sub-classes will never be used to drive a visit of an
  // `HGraph` but only to visit `HInstructions` one at a time, so we do not need
  // to pass a valid graph to `HGraphDelegateVisitor()`.
  SchedulingLatencyVisitor()
      : HGraphDelegateVisitor(nullptr),
        last_visited_latency_(0),
        last_visited_internal_latency_(0) {}

  void VisitInstruction(HInstruction* instruction) override {
    LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
        "Architecture-specific scheduling latency visitors must handle all instructions"
        " (potentially by overriding the generic `VisitInstruction()`.";
    UNREACHABLE();
  }

  void Visit(HInstruction* instruction) {
    instruction->Accept(this);
  }

  void CalculateLatency(SchedulingNode* node) {
    // By default nodes have no internal latency.
    last_visited_internal_latency_ = 0;
    Visit(node->GetInstruction());
  }

  uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
  uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }

 protected:
  // The latency of the most recent visited SchedulingNode.
  // This is for reporting the latency value to the user of this visitor.
  uint32_t last_visited_latency_;
  // This represents the time spent *within* the generated code for the most recent visited
  // SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
  uint32_t last_visited_internal_latency_;
};

class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
 public:
  virtual void Reset() {}
  virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
                                                 const SchedulingGraph& graph) = 0;
  virtual ~SchedulingNodeSelector() {}
 protected:
  static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) {
    (*nodes)[index] = nodes->back();
    nodes->pop_back();
  }
};

/*
 * Select a `SchedulingNode` at random within the candidates.
 */
class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
 public:
  RandomSchedulingNodeSelector() : seed_(0) {
    seed_  = static_cast<uint32_t>(NanoTime());
    srand(seed_);
  }

  SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
                                         const SchedulingGraph& graph) override {
    UNUSED(graph);
    DCHECK(!nodes->empty());
    size_t select = rand_r(&seed_) % nodes->size();
    SchedulingNode* select_node = (*nodes)[select];
    DeleteNodeAtIndex(nodes, select);
    return select_node;
  }

  uint32_t seed_;
};

/*
 * Select a `SchedulingNode` according to critical path information,
 * with heuristics to favor certain instruction patterns like materialized condition.
 */
class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
 public:
  CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}

  void Reset() override { prev_select_ = nullptr; }
  SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
                                         const SchedulingGraph& graph) override;

 protected:
  SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
                                                  SchedulingNode* check) const;

  SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes,
                                              const SchedulingGraph& graph) const;

 private:
  const SchedulingNode* prev_select_;
};

class HScheduler {
 public:
  HScheduler(SchedulingLatencyVisitor* latency_visitor, SchedulingNodeSelector* selector)
      : latency_visitor_(latency_visitor),
        selector_(selector),
        only_optimize_loop_blocks_(true),
        cursor_(nullptr) {}
  virtual ~HScheduler() {}

  void Schedule(HGraph* graph);

  void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }

  // Instructions can not be rescheduled across a scheduling barrier.
  virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;

 protected:
  void Schedule(HBasicBlock* block, const HeapLocationCollector* heap_location_collector);
  void Schedule(SchedulingNode* scheduling_node,
                /*inout*/ ScopedArenaVector<SchedulingNode*>* candidates);
  void Schedule(HInstruction* instruction);

  // Any instruction returning `false` via this method will prevent its
  // containing basic block from being scheduled.
  // This method is used to restrict scheduling to instructions that we know are
  // safe to handle.
  //
  // For newly introduced instructions by default HScheduler::IsSchedulable returns false.
  // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see
  // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also
  // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction.
  virtual bool IsSchedulable(const HInstruction* instruction) const;
  bool IsSchedulable(const HBasicBlock* block) const;

  void CalculateLatency(SchedulingNode* node) {
    latency_visitor_->CalculateLatency(node);
    node->SetLatency(latency_visitor_->GetLastVisitedLatency());
    node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency());
  }

  SchedulingLatencyVisitor* const latency_visitor_;
  SchedulingNodeSelector* const selector_;
  bool only_optimize_loop_blocks_;

  // A pointer indicating where the next instruction to be scheduled will be inserted.
  HInstruction* cursor_;

 private:
  DISALLOW_COPY_AND_ASSIGN(HScheduler);
};

class HInstructionScheduling : public HOptimization {
 public:
  HInstructionScheduling(HGraph* graph,
                         InstructionSet instruction_set,
                         CodeGenerator* cg = nullptr,
                         const char* name = kInstructionSchedulingPassName)
      : HOptimization(graph, name),
        codegen_(cg),
        instruction_set_(instruction_set) {}

  bool Run() override {
    return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
  }

  bool Run(bool only_optimize_loop_blocks, bool schedule_randomly);

  static constexpr const char* kInstructionSchedulingPassName = "scheduler";

 private:
  CodeGenerator* const codegen_;
  const InstructionSet instruction_set_;
  DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
};

}  // namespace art

#endif  // ART_COMPILER_OPTIMIZING_SCHEDULER_H_