1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
#define ART_COMPILER_OPTIMIZING_SCHEDULER_H_
#include <fstream>
#include "base/macros.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "base/time_utils.h"
#include "code_generator.h"
#include "load_store_analysis.h"
#include "nodes.h"
#include "optimization.h"
namespace art HIDDEN {
// General description of instruction scheduling.
//
// This pass tries to improve the quality of the generated code by reordering
// instructions in the graph to avoid execution delays caused by execution
// dependencies.
// Currently, scheduling is performed at the block level, so no `HInstruction`
// ever leaves its block in this pass.
//
// The scheduling process iterates through blocks in the graph. For blocks that
// we can and want to schedule:
// 1) Build a dependency graph for instructions.
// It includes data dependencies (inputs/uses), but also environment
// dependencies and side-effect dependencies.
// 2) Schedule the dependency graph.
// This is a topological sort of the dependency graph, using heuristics to
// decide what node to scheduler first when there are multiple candidates.
//
// A few factors impacting the quality of the scheduling are:
// - The heuristics used to decide what node to schedule in the topological sort
// when there are multiple valid candidates. There is a wide range of
// complexity possible here, going from a simple model only considering
// latencies, to a super detailed CPU pipeline model.
// - Fewer dependencies in the dependency graph give more freedom for the
// scheduling heuristics. For example de-aliasing can allow possibilities for
// reordering of memory accesses.
// - The level of abstraction of the IR. It is easier to evaluate scheduling for
// IRs that translate to a single assembly instruction than for IRs
// that generate multiple assembly instructions or generate different code
// depending on properties of the IR.
// - Scheduling is performed before register allocation, it is not aware of the
// impact of moving instructions on register allocation.
//
//
// The scheduling code uses the terms predecessors, successors, and dependencies.
// This can be confusing at times, so here are clarifications.
// These terms are used from the point of view of the program dependency graph. So
// the inputs of an instruction are part of its dependencies, and hence part its
// predecessors. So the uses of an instruction are (part of) its successors.
// (Side-effect dependencies can yield predecessors or successors that are not
// inputs or uses.)
//
// Here is a trivial example. For the Java code:
//
// int a = 1 + 2;
//
// we would have the instructions
//
// i1 HIntConstant 1
// i2 HIntConstant 2
// i3 HAdd [i1,i2]
//
// `i1` and `i2` are predecessors of `i3`.
// `i3` is a successor of `i1` and a successor of `i2`.
// In a scheduling graph for this code we would have three nodes `n1`, `n2`,
// and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
// Conceptually the program dependency graph for this would contain two edges
//
// n1 -> n3
// n2 -> n3
//
// Since we schedule backwards (starting from the last instruction in each basic
// block), the implementation of nodes keeps a list of pointers their
// predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
//
// Node dependencies are also referred to from the program dependency graph
// point of view: we say that node `B` immediately depends on `A` if there is an
// edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
// `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
// `n2`.
// Since nodes in the scheduling graph keep a list of their predecessors, node
// `B` will have a pointer to its predecessor `A`.
// As we schedule backwards, `B` will be selected for scheduling before `A` is.
//
// So the scheduling for the example above could happen as follow
//
// |---------------------------+------------------------|
// | candidates for scheduling | instructions scheduled |
// | --------------------------+------------------------|
//
// The only node without successors is `n3`, so it is the only initial
// candidate.
//
// | n3 | (none) |
//
// We schedule `n3` as the last (and only) instruction. All its predecessors
// that do not have any unscheduled successors become candidate. That is, `n1`
// and `n2` become candidates.
//
// | n1, n2 | n3 |
//
// One of the candidates is selected. In practice this is where scheduling
// heuristics kick in, to decide which of the candidates should be selected.
// In this example, let it be `n1`. It is scheduled before previously scheduled
// nodes (in program order). There are no other nodes to add to the list of
// candidates.
//
// | n2 | n1 |
// | | n3 |
//
// The only candidate available for scheduling is `n2`. Schedule it before
// (in program order) the previously scheduled nodes.
//
// | (none) | n2 |
// | | n1 |
// | | n3 |
// |---------------------------+------------------------|
//
// So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
// In this trivial example, it does not matter which of `i1` and `i2` is
// scheduled first since they are constants. However the same process would
// apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).
// Set to true to have instruction scheduling dump scheduling graphs to the file
// `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
static constexpr bool kDumpDotSchedulingGraphs = false;
// Typically used as a default instruction latency.
static constexpr uint32_t kGenericInstructionLatency = 1;
class HScheduler;
/**
* A node representing an `HInstruction` in the `SchedulingGraph`.
*/
class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> {
public:
SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier)
: latency_(0),
internal_latency_(0),
critical_path_(0),
instruction_(instr),
is_scheduling_barrier_(is_scheduling_barrier),
data_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
other_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
num_unscheduled_successors_(0) {
data_predecessors_.reserve(kPreallocatedPredecessors);
}
void AddDataPredecessor(SchedulingNode* predecessor) {
// Check whether the predecessor has been added earlier.
if (HasDataDependency(predecessor)) {
return;
}
data_predecessors_.push_back(predecessor);
predecessor->num_unscheduled_successors_++;
}
const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const {
return data_predecessors_;
}
void AddOtherPredecessor(SchedulingNode* predecessor) {
// Check whether the predecessor has been added earlier.
// As an optimization of the scheduling graph, we don't need to create another dependency if
// there is a data dependency between scheduling nodes.
if (HasOtherDependency(predecessor) || HasDataDependency(predecessor)) {
return;
}
other_predecessors_.push_back(predecessor);
predecessor->num_unscheduled_successors_++;
}
const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const {
return other_predecessors_;
}
void DecrementNumberOfUnscheduledSuccessors() {
num_unscheduled_successors_--;
}
void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
critical_path_ = std::max(critical_path_, other_critical_path);
}
bool HasUnscheduledSuccessors() const {
return num_unscheduled_successors_ != 0;
}
HInstruction* GetInstruction() const { return instruction_; }
uint32_t GetLatency() const { return latency_; }
void SetLatency(uint32_t latency) { latency_ = latency; }
uint32_t GetInternalLatency() const { return internal_latency_; }
void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
uint32_t GetCriticalPath() const { return critical_path_; }
bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }
bool HasDataDependency(const SchedulingNode* node) const {
return ContainsElement(data_predecessors_, node);
}
bool HasOtherDependency(const SchedulingNode* node) const {
return ContainsElement(other_predecessors_, node);
}
private:
// The latency of this node. It represents the latency between the moment the
// last instruction for this node has executed to the moment the result
// produced by this node is available to users.
uint32_t latency_;
// This represents the time spent *within* the generated code for this node.
// It should be zero for nodes that only generate a single instruction.
uint32_t internal_latency_;
// The critical path from this instruction to the end of scheduling. It is
// used by the scheduling heuristics to measure the priority of this instruction.
// It is defined as
// critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
// (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
// `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
uint32_t critical_path_;
// The instruction that this node represents.
HInstruction* const instruction_;
// If a node is scheduling barrier, other nodes cannot be scheduled before it.
const bool is_scheduling_barrier_;
// The lists of predecessors. They cannot be scheduled before this node. Once
// this node is scheduled, we check whether any of its predecessors has become a
// valid candidate for scheduling.
// Predecessors in `data_predecessors_` are data dependencies. Those in
// `other_predecessors_` contain side-effect dependencies, environment
// dependencies, and scheduling barrier dependencies.
ScopedArenaVector<SchedulingNode*> data_predecessors_;
ScopedArenaVector<SchedulingNode*> other_predecessors_;
// The number of unscheduled successors for this node. This number is
// decremented as successors are scheduled. When it reaches zero this node
// becomes a valid candidate to schedule.
uint32_t num_unscheduled_successors_;
static constexpr size_t kPreallocatedPredecessors = 4;
};
/*
* Provide analysis of instruction dependencies (side effects) which are not in a form of explicit
* def-use data dependencies.
*/
class SideEffectDependencyAnalysis {
public:
explicit SideEffectDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
: memory_dependency_analysis_(heap_location_collector) {}
bool HasSideEffectDependency(HInstruction* instr1, HInstruction* instr2) const {
if (memory_dependency_analysis_.HasMemoryDependency(instr1, instr2)) {
return true;
}
// Even if above memory dependency check has passed, it is still necessary to
// check dependencies between instructions that can throw and instructions
// that write to memory.
if (HasExceptionDependency(instr1, instr2)) {
return true;
}
return false;
}
private:
static bool HasExceptionDependency(const HInstruction* instr1, const HInstruction* instr2);
static bool HasReorderingDependency(const HInstruction* instr1, const HInstruction* instr2);
/*
* Memory dependency analysis of instructions based on their memory side effects
* and heap location information from the LCA pass if it is provided.
*/
class MemoryDependencyAnalysis {
public:
explicit MemoryDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
: heap_location_collector_(heap_location_collector) {}
bool HasMemoryDependency(HInstruction* instr1, HInstruction* instr2) const;
private:
bool ArrayAccessMayAlias(HInstruction* instr1, HInstruction* instr2) const;
bool FieldAccessMayAlias(const HInstruction* instr1, const HInstruction* instr2) const;
size_t ArrayAccessHeapLocation(HInstruction* instruction) const;
size_t FieldAccessHeapLocation(const HInstruction* instruction) const;
const HeapLocationCollector* const heap_location_collector_;
};
MemoryDependencyAnalysis memory_dependency_analysis_;
};
/*
* Directed acyclic graph for scheduling.
*/
class SchedulingGraph : public ValueObject {
public:
SchedulingGraph(ScopedArenaAllocator* allocator,
const HeapLocationCollector* heap_location_collector)
: allocator_(allocator),
contains_scheduling_barrier_(false),
nodes_map_(allocator_->Adapter(kArenaAllocScheduler)),
side_effect_dependency_analysis_(heap_location_collector) {}
SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
std::unique_ptr<SchedulingNode> node(
new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier));
SchedulingNode* result = node.get();
nodes_map_.insert(std::make_pair(instr, std::move(node)));
contains_scheduling_barrier_ |= is_scheduling_barrier;
AddDependencies(result, is_scheduling_barrier);
return result;
}
SchedulingNode* GetNode(const HInstruction* instr) const {
auto it = nodes_map_.find(instr);
if (it == nodes_map_.end()) {
return nullptr;
} else {
return it->second.get();
}
}
size_t Size() const {
return nodes_map_.size();
}
// Dump the scheduling graph, in dot file format, appending it to the file
// `scheduling_graphs.dot`.
void DumpAsDotGraph(const std::string& description,
const ScopedArenaVector<SchedulingNode*>& initial_candidates);
protected:
void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
AddDependency(node, dependency, /*is_data_dependency*/true);
}
void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
AddDependency(node, dependency, /*is_data_dependency*/false);
}
// Analyze whether the scheduling node has cross-iteration dependencies which mean it uses
// values defined on the previous iteration.
//
// Supported cases:
//
// L:
// v2 = loop_head_phi(v1)
// instr1(v2)
// v1 = instr2
// goto L
//
// In such cases moving instr2 before instr1 creates intersecting live ranges
// of v1 and v2. As a result a separate register is needed to keep the value
// defined by instr2 which is only used on the next iteration.
// If instr2 is not moved, no additional register is needed. The register
// used by instr1 is reused.
// To prevent such a situation a "other" dependency between instr1 and instr2 must be set.
void AddCrossIterationDependencies(SchedulingNode* node);
// Add dependencies nodes for the given `SchedulingNode`: inputs, environments, and side-effects.
void AddDependencies(SchedulingNode* node, bool is_scheduling_barrier = false);
ScopedArenaAllocator* const allocator_;
bool contains_scheduling_barrier_;
ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_;
SideEffectDependencyAnalysis side_effect_dependency_analysis_;
};
/*
* The visitors derived from this base class are used by schedulers to evaluate
* the latencies of `HInstruction`s.
*/
class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
public:
// This class and its sub-classes will never be used to drive a visit of an
// `HGraph` but only to visit `HInstructions` one at a time, so we do not need
// to pass a valid graph to `HGraphDelegateVisitor()`.
SchedulingLatencyVisitor()
: HGraphDelegateVisitor(nullptr),
last_visited_latency_(0),
last_visited_internal_latency_(0) {}
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
"Architecture-specific scheduling latency visitors must handle all instructions"
" (potentially by overriding the generic `VisitInstruction()`.";
UNREACHABLE();
}
void Visit(HInstruction* instruction) {
instruction->Accept(this);
}
void CalculateLatency(SchedulingNode* node) {
// By default nodes have no internal latency.
last_visited_internal_latency_ = 0;
Visit(node->GetInstruction());
}
uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }
protected:
// The latency of the most recent visited SchedulingNode.
// This is for reporting the latency value to the user of this visitor.
uint32_t last_visited_latency_;
// This represents the time spent *within* the generated code for the most recent visited
// SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
uint32_t last_visited_internal_latency_;
};
class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
public:
virtual void Reset() {}
virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
const SchedulingGraph& graph) = 0;
virtual ~SchedulingNodeSelector() {}
protected:
static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) {
(*nodes)[index] = nodes->back();
nodes->pop_back();
}
};
/*
* Select a `SchedulingNode` at random within the candidates.
*/
class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
public:
RandomSchedulingNodeSelector() : seed_(0) {
seed_ = static_cast<uint32_t>(NanoTime());
srand(seed_);
}
SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
const SchedulingGraph& graph) override {
UNUSED(graph);
DCHECK(!nodes->empty());
size_t select = rand_r(&seed_) % nodes->size();
SchedulingNode* select_node = (*nodes)[select];
DeleteNodeAtIndex(nodes, select);
return select_node;
}
uint32_t seed_;
};
/*
* Select a `SchedulingNode` according to critical path information,
* with heuristics to favor certain instruction patterns like materialized condition.
*/
class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
public:
CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}
void Reset() override { prev_select_ = nullptr; }
SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
const SchedulingGraph& graph) override;
protected:
SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
SchedulingNode* check) const;
SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes,
const SchedulingGraph& graph) const;
private:
const SchedulingNode* prev_select_;
};
class HScheduler {
public:
HScheduler(SchedulingLatencyVisitor* latency_visitor, SchedulingNodeSelector* selector)
: latency_visitor_(latency_visitor),
selector_(selector),
only_optimize_loop_blocks_(true),
cursor_(nullptr) {}
virtual ~HScheduler() {}
void Schedule(HGraph* graph);
void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }
// Instructions can not be rescheduled across a scheduling barrier.
virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;
protected:
void Schedule(HBasicBlock* block, const HeapLocationCollector* heap_location_collector);
void Schedule(SchedulingNode* scheduling_node,
/*inout*/ ScopedArenaVector<SchedulingNode*>* candidates);
void Schedule(HInstruction* instruction);
// Any instruction returning `false` via this method will prevent its
// containing basic block from being scheduled.
// This method is used to restrict scheduling to instructions that we know are
// safe to handle.
//
// For newly introduced instructions by default HScheduler::IsSchedulable returns false.
// HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see
// scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also
// look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction.
virtual bool IsSchedulable(const HInstruction* instruction) const;
bool IsSchedulable(const HBasicBlock* block) const;
void CalculateLatency(SchedulingNode* node) {
latency_visitor_->CalculateLatency(node);
node->SetLatency(latency_visitor_->GetLastVisitedLatency());
node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency());
}
SchedulingLatencyVisitor* const latency_visitor_;
SchedulingNodeSelector* const selector_;
bool only_optimize_loop_blocks_;
// A pointer indicating where the next instruction to be scheduled will be inserted.
HInstruction* cursor_;
private:
DISALLOW_COPY_AND_ASSIGN(HScheduler);
};
class HInstructionScheduling : public HOptimization {
public:
HInstructionScheduling(HGraph* graph,
InstructionSet instruction_set,
CodeGenerator* cg = nullptr,
const char* name = kInstructionSchedulingPassName)
: HOptimization(graph, name),
codegen_(cg),
instruction_set_(instruction_set) {}
bool Run() override {
return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
}
bool Run(bool only_optimize_loop_blocks, bool schedule_randomly);
static constexpr const char* kInstructionSchedulingPassName = "scheduler";
private:
CodeGenerator* const codegen_;
const InstructionSet instruction_set_;
DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_
|