File: scheduler_test.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (465 lines) | stat: -rw-r--r-- 23,097 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "scheduler.h"

#include "base/arena_allocator.h"
#include "base/macros.h"
#include "builder.h"
#include "codegen_test_utils.h"
#include "common_compiler_test.h"
#include "load_store_analysis.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
#include "pc_relative_fixups_x86.h"
#include "register_allocator.h"

#ifdef ART_ENABLE_CODEGEN_arm64
#include "scheduler_arm64.h"
#endif

#ifdef ART_ENABLE_CODEGEN_arm
#include "scheduler_arm.h"
#endif

namespace art HIDDEN {

// Return all combinations of ISA and code generator that are executable on
// hardware, or on simulator, and that we'd like to test.
static ::std::vector<CodegenTargetConfig> GetTargetConfigs() {
  ::std::vector<CodegenTargetConfig> v;
  ::std::vector<CodegenTargetConfig> test_config_candidates = {
#ifdef ART_ENABLE_CODEGEN_arm
    // TODO: Should't this be `kThumb2` instead of `kArm` here?
    CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32),
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
    CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64),
#endif
#ifdef ART_ENABLE_CODEGEN_x86
    CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86),
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
    CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64),
#endif
  };

  for (const CodegenTargetConfig& test_config : test_config_candidates) {
    if (CanExecute(test_config.GetInstructionSet())) {
      v.push_back(test_config);
    }
  }

  return v;
}

class SchedulerTest : public CommonCompilerTest, public OptimizingUnitTestHelper {
 public:
  SchedulerTest() : graph_(CreateGraph()) { }

  // Build scheduling graph, and run target specific scheduling on it.
  void TestBuildDependencyGraphAndSchedule(HScheduler* scheduler) {
    HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
    HBasicBlock* block1 = new (GetAllocator()) HBasicBlock(graph_);
    graph_->AddBlock(entry);
    graph_->AddBlock(block1);
    graph_->SetEntryBlock(entry);

    // entry:
    // array         ParameterValue
    // c1            IntConstant
    // c2            IntConstant
    // block1:
    // add1          Add [c1, c2]
    // add2          Add [add1, c2]
    // mul           Mul [add1, add2]
    // div_check     DivZeroCheck [add2] (env: add2, mul)
    // div           Div [add1, div_check]
    // array_get1    ArrayGet [array, add1]
    // array_set1    ArraySet [array, add1, add2]
    // array_get2    ArrayGet [array, add1]
    // array_set2    ArraySet [array, add1, add2]

    HInstruction* array = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
                                                           dex::TypeIndex(0),
                                                           0,
                                                           DataType::Type::kReference);
    HInstruction* c1 = graph_->GetIntConstant(1);
    HInstruction* c2 = graph_->GetIntConstant(10);
    HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, c1, c2);
    HInstruction* add2 = new (GetAllocator()) HAdd(DataType::Type::kInt32, add1, c2);
    HInstruction* mul = new (GetAllocator()) HMul(DataType::Type::kInt32, add1, add2);
    HInstruction* div_check = new (GetAllocator()) HDivZeroCheck(add2, 0);
    HInstruction* div = new (GetAllocator()) HDiv(DataType::Type::kInt32, add1, div_check, 0);
    HInstruction* array_get1 =
        new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0);
    HInstruction* array_set1 =
        new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0);
    HInstruction* array_get2 =
        new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0);
    HInstruction* array_set2 =
        new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0);

    DCHECK(div_check->CanThrow());

    entry->AddInstruction(array);

    HInstruction* block_instructions[] = {add1,
                                          add2,
                                          mul,
                                          div_check,
                                          div,
                                          array_get1,
                                          array_set1,
                                          array_get2,
                                          array_set2};
    for (HInstruction* instr : block_instructions) {
      block1->AddInstruction(instr);
    }

    HEnvironment* environment = new (GetAllocator()) HEnvironment(GetAllocator(),
                                                                  2,
                                                                  graph_->GetArtMethod(),
                                                                  0,
                                                                  div_check);
    div_check->SetRawEnvironment(environment);
    environment->SetRawEnvAt(0, add2);
    add2->AddEnvUseAt(div_check->GetEnvironment(), 0);
    environment->SetRawEnvAt(1, mul);
    mul->AddEnvUseAt(div_check->GetEnvironment(), 1);

    TestSchedulingGraph scheduling_graph(GetScopedAllocator());
    // Instructions must be inserted in reverse order into the scheduling graph.
    for (HInstruction* instr : ReverseRange(block_instructions)) {
      scheduling_graph.AddNode(instr);
    }

    // Should not have dependencies cross basic blocks.
    ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, c1));
    ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add2, c2));

    // Define-use dependency.
    ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(add2, add1));
    ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, add2));
    ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div_check, add2));
    ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(div_check, add1));
    ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div, div_check));
    ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add1));
    ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add2));

    // Read and write dependencies
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, array_get1));
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_get2));
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_get2, array_set1));
    // Unnecessary dependency is not stored, we rely on transitive dependencies.
    // The array_set2 -> array_get2 -> array_set1 dependencies are tested above.
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_set1));

    // Env dependency.
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(div_check, mul));
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(mul, div_check));

    // CanThrow.
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, div_check));

    // Exercise the code path of target specific scheduler and SchedulingLatencyVisitor.
    scheduler->Schedule(graph_);
  }

  void CompileWithRandomSchedulerAndRun(const std::vector<uint16_t>& data,
                                        bool has_result,
                                        int expected) {
    for (CodegenTargetConfig target_config : GetTargetConfigs()) {
      HGraph* graph = CreateCFG(data);

      // Schedule the graph randomly.
      HInstructionScheduling scheduling(graph, target_config.GetInstructionSet());
      scheduling.Run(/*only_optimize_loop_blocks*/ false, /*schedule_randomly*/ true);

      std::unique_ptr<CompilerOptions> compiler_options =
          CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default");
      RunCode(target_config,
              *compiler_options,
              graph,
              [](HGraph* graph_arg) { RemoveSuspendChecks(graph_arg); },
              has_result, expected);
    }
  }

  void TestDependencyGraphOnAliasingArrayAccesses(HScheduler* scheduler) {
    HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
    graph_->AddBlock(entry);
    graph_->SetEntryBlock(entry);
    graph_->BuildDominatorTree();

    HInstruction* arr = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
                                                             dex::TypeIndex(0),
                                                             0,
                                                             DataType::Type::kReference);
    HInstruction* i = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
                                                           dex::TypeIndex(1),
                                                           1,
                                                           DataType::Type::kInt32);
    HInstruction* j = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
                                                           dex::TypeIndex(1),
                                                           1,
                                                           DataType::Type::kInt32);
    HInstruction* object = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
                                                                dex::TypeIndex(0),
                                                                0,
                                                                DataType::Type::kReference);
    HInstruction* c0 = graph_->GetIntConstant(0);
    HInstruction* c1 = graph_->GetIntConstant(1);
    HInstruction* add0 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c0);
    HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c1);
    HInstruction* sub0 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c0);
    HInstruction* sub1 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c1);
    HInstruction* arr_set_0 =
        new (GetAllocator()) HArraySet(arr, c0, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_1 =
        new (GetAllocator()) HArraySet(arr, c1, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_i = new (GetAllocator()) HArraySet(arr, i, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_add0 =
        new (GetAllocator()) HArraySet(arr, add0, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_add1 =
        new (GetAllocator()) HArraySet(arr, add1, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_sub0 =
        new (GetAllocator()) HArraySet(arr, sub0, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_sub1 =
        new (GetAllocator()) HArraySet(arr, sub1, c0, DataType::Type::kInt32, 0);
    HInstruction* arr_set_j = new (GetAllocator()) HArraySet(arr, j, c0, DataType::Type::kInt32, 0);
    HInstanceFieldSet* set_field10 = new (GetAllocator()) HInstanceFieldSet(object,
                                                                            c1,
                                                                            nullptr,
                                                                            DataType::Type::kInt32,
                                                                            MemberOffset(10),
                                                                            false,
                                                                            kUnknownFieldIndex,
                                                                            kUnknownClassDefIndex,
                                                                            graph_->GetDexFile(),
                                                                            0);

    HInstruction* block_instructions[] = {arr,
                                          i,
                                          j,
                                          object,
                                          add0,
                                          add1,
                                          sub0,
                                          sub1,
                                          arr_set_0,
                                          arr_set_1,
                                          arr_set_i,
                                          arr_set_add0,
                                          arr_set_add1,
                                          arr_set_sub0,
                                          arr_set_sub1,
                                          arr_set_j,
                                          set_field10};

    for (HInstruction* instr : block_instructions) {
      entry->AddInstruction(instr);
    }

    HeapLocationCollector heap_location_collector(
        graph_, GetScopedAllocator(), LoadStoreAnalysisType::kBasic);
    heap_location_collector.VisitBasicBlock(entry);
    heap_location_collector.BuildAliasingMatrix();
    TestSchedulingGraph scheduling_graph(GetScopedAllocator(), &heap_location_collector);

    for (HInstruction* instr : ReverseRange(block_instructions)) {
      // Build scheduling graph with memory access aliasing information
      // from LSA/heap_location_collector.
      scheduling_graph.AddNode(instr);
    }

    // LSA/HeapLocationCollector should see those ArraySet instructions.
    ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 9U);
    ASSERT_TRUE(heap_location_collector.HasHeapStores());

    // Test queries on HeapLocationCollector's aliasing matrix after load store analysis.
    // HeapLocationCollector and SchedulingGraph should report consistent relationships.
    size_t loc1 = HeapLocationCollector::kHeapLocationNotFound;
    size_t loc2 = HeapLocationCollector::kHeapLocationNotFound;

    // Test side effect dependency: array[0] and array[1]
    loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0);
    loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_1);
    ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_1, arr_set_0));

    // Test side effect dependency based on LSA analysis: array[i] and array[j]
    loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
    loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_j);
    ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
    // Unnecessary dependency is not stored, we rely on transitive dependencies.
    // The arr_set_j -> arr_set_sub0 -> arr_set_add0 -> arr_set_i dependencies are tested below.
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i));

    // Test side effect dependency based on LSA analysis: array[i] and array[i+0]
    loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
    loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add0);
    ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_add0, arr_set_i));

    // Test side effect dependency based on LSA analysis: array[i] and array[i-0]
    loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
    loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub0);
    ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
    // Unnecessary dependency is not stored, we rely on transitive dependencies.
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_i));
    // Instead, we rely on arr_set_sub0 -> arr_set_add0 -> arr_set_i, the latter is tested above.
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_add0));

    // Test side effect dependency based on LSA analysis: array[i] and array[i+1]
    loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
    loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add1);
    ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_add1, arr_set_i));

    // Test side effect dependency based on LSA analysis: array[i+1] and array[i-1]
    loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_add1);
    loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub1);
    ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub1, arr_set_add1));

    // Test side effect dependency based on LSA analysis: array[j] and all others array accesses
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub0));
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add1));
    ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub1));
    // Unnecessary dependencies are not stored, we rely on transitive dependencies.
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i));
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add0));

    // Test that ArraySet and FieldSet should not have side effect dependency
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_i, set_field10));
    ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, set_field10));

    // Exercise target specific scheduler and SchedulingLatencyVisitor.
    scheduler->Schedule(graph_);
  }

  class TestSchedulingGraph : public SchedulingGraph {
   public:
    explicit TestSchedulingGraph(ScopedArenaAllocator* allocator,
                                 const HeapLocationCollector *heap_location_collector = nullptr)
        : SchedulingGraph(allocator, heap_location_collector) {}

    bool HasImmediateDataDependency(const HInstruction* instruction,
                                    const HInstruction* other_instruction) const {
      const SchedulingNode* node = GetNode(instruction);
      const SchedulingNode* other = GetNode(other_instruction);
      if (node == nullptr || other == nullptr) {
        // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
        // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
        // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
        // instruction and other_instruction are in different basic blocks.
        return false;
      }
      return node->HasDataDependency(other);
    }

    bool HasImmediateOtherDependency(const HInstruction* instruction,
                                     const HInstruction* other_instruction) const {
      const SchedulingNode* node = GetNode(instruction);
      const SchedulingNode* other = GetNode(other_instruction);
      if (node == nullptr || other == nullptr) {
        // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
        // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
        // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
        // instruction and other_instruction are in different basic blocks.
        return false;
      }
      return node->HasOtherDependency(other);
    }
  };

  HGraph* graph_;
};

#if defined(ART_ENABLE_CODEGEN_arm64)
TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM64) {
  CriticalPathSchedulingNodeSelector critical_path_selector;
  arm64::HSchedulerARM64 scheduler(&critical_path_selector);
  TestBuildDependencyGraphAndSchedule(&scheduler);
}

TEST_F(SchedulerTest, ArrayAccessAliasingARM64) {
  CriticalPathSchedulingNodeSelector critical_path_selector;
  arm64::HSchedulerARM64 scheduler(&critical_path_selector);
  TestDependencyGraphOnAliasingArrayAccesses(&scheduler);
}
#endif

#if defined(ART_ENABLE_CODEGEN_arm)
TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM) {
  CriticalPathSchedulingNodeSelector critical_path_selector;
  arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr);
  arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor);
  TestBuildDependencyGraphAndSchedule(&scheduler);
}

TEST_F(SchedulerTest, ArrayAccessAliasingARM) {
  CriticalPathSchedulingNodeSelector critical_path_selector;
  arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr);
  arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor);
  TestDependencyGraphOnAliasingArrayAccesses(&scheduler);
}
#endif

TEST_F(SchedulerTest, RandomScheduling) {
  //
  // Java source: crafted code to make sure (random) scheduling should get correct result.
  //
  //  int result = 0;
  //  float fr = 10.0f;
  //  for (int i = 1; i < 10; i++) {
  //    fr ++;
  //    int t1 = result >> i;
  //    int t2 = result * i;
  //    result = result + t1 - t2;
  //    fr = fr / i;
  //    result += (int)fr;
  //  }
  //  return result;
  //
  const std::vector<uint16_t> data = SIX_REGISTERS_CODE_ITEM(
    Instruction::CONST_4 | 0 << 12 | 2 << 8,          // const/4 v2, #int 0
    Instruction::CONST_HIGH16 | 0 << 8, 0x4120,       // const/high16 v0, #float 10.0 // #41200000
    Instruction::CONST_4 | 1 << 12 | 1 << 8,          // const/4 v1, #int 1
    Instruction::CONST_16 | 5 << 8, 0x000a,           // const/16 v5, #int 10
    Instruction::IF_GE | 5 << 12 | 1 << 8, 0x0014,    // if-ge v1, v5, 001a // +0014
    Instruction::CONST_HIGH16 | 5 << 8, 0x3f80,       // const/high16 v5, #float 1.0 // #3f800000
    Instruction::ADD_FLOAT_2ADDR | 5 << 12 | 0 << 8,  // add-float/2addr v0, v5
    Instruction::SHR_INT | 3 << 8, 1 << 8 | 2 ,       // shr-int v3, v2, v1
    Instruction::MUL_INT | 4 << 8, 1 << 8 | 2,        // mul-int v4, v2, v1
    Instruction::ADD_INT | 5 << 8, 3 << 8 | 2,        // add-int v5, v2, v3
    Instruction::SUB_INT | 2 << 8, 4 << 8 | 5,        // sub-int v2, v5, v4
    Instruction::INT_TO_FLOAT | 1 << 12 | 5 << 8,     // int-to-float v5, v1
    Instruction::DIV_FLOAT_2ADDR | 5 << 12 | 0 << 8,  // div-float/2addr v0, v5
    Instruction::FLOAT_TO_INT | 0 << 12 | 5 << 8,     // float-to-int v5, v0
    Instruction::ADD_INT_2ADDR | 5 << 12 | 2 << 8,    // add-int/2addr v2, v5
    Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8 | 1,   // add-int/lit8 v1, v1, #int 1 // #01
    Instruction::GOTO | 0xeb << 8,                    // goto 0004 // -0015
    Instruction::RETURN | 2 << 8);                    // return v2

  constexpr int kNumberOfRuns = 10;
  for (int i = 0; i < kNumberOfRuns; ++i) {
    CompileWithRandomSchedulerAndRun(data, true, 138774);
  }
}

}  // namespace art