File: ssa_phi_elimination.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (262 lines) | stat: -rw-r--r-- 9,525 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ssa_phi_elimination.h"

#include "base/arena_bit_vector.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/bit_vector-inl.h"

namespace art HIDDEN {

bool SsaDeadPhiElimination::Run() {
  MarkDeadPhis();
  EliminateDeadPhis();
  return true;
}

void SsaDeadPhiElimination::MarkDeadPhis() {
  // Use local allocator for allocating memory used by this optimization.
  ScopedArenaAllocator allocator(graph_->GetArenaStack());

  static constexpr size_t kDefaultWorklistSize = 8;
  ScopedArenaVector<HPhi*> worklist(allocator.Adapter(kArenaAllocSsaPhiElimination));
  worklist.reserve(kDefaultWorklistSize);

  // Phis are constructed live and should not be revived if previously marked
  // dead. This algorithm temporarily breaks that invariant but we DCHECK that
  // only phis which were initially live are revived.
  ScopedArenaSet<HPhi*> initially_live(allocator.Adapter(kArenaAllocSsaPhiElimination));

  // Add to the worklist phis referenced by non-phi instructions.
  for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
      HPhi* phi = inst_it.Current()->AsPhi();
      if (phi->IsDead()) {
        continue;
      }

      bool keep_alive = (graph_->IsDebuggable() && phi->HasEnvironmentUses());
      if (!keep_alive) {
        for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
          if (!use.GetUser()->IsPhi()) {
            keep_alive = true;
            break;
          }
        }
      }

      if (keep_alive) {
        worklist.push_back(phi);
      } else {
        phi->SetDead();
        if (kIsDebugBuild) {
          initially_live.insert(phi);
        }
      }
    }
  }

  // Process the worklist by propagating liveness to phi inputs.
  while (!worklist.empty()) {
    HPhi* phi = worklist.back();
    worklist.pop_back();
    for (HInstruction* raw_input : phi->GetInputs()) {
      HPhi* input = raw_input->AsPhi();
      if (input != nullptr && input->IsDead()) {
        // Input is a dead phi. Revive it and add to the worklist. We make sure
        // that the phi was not dead initially (see definition of `initially_live`).
        DCHECK(ContainsElement(initially_live, input));
        input->SetLive();
        worklist.push_back(input);
      }
    }
  }
}

void SsaDeadPhiElimination::EliminateDeadPhis() {
  // Remove phis that are not live. Visit in post order so that phis
  // that are not inputs of loop phis can be removed when they have
  // no users left (dead phis might use dead phis).
  for (HBasicBlock* block : graph_->GetPostOrder()) {
    HInstruction* current = block->GetFirstPhi();
    HInstruction* next = nullptr;
    HPhi* phi;
    while (current != nullptr) {
      phi = current->AsPhi();
      next = current->GetNext();
      if (phi->IsDead()) {
        // Make sure the phi is only used by other dead phis.
        if (kIsDebugBuild) {
          for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
            HInstruction* user = use.GetUser();
            DCHECK(user->IsLoopHeaderPhi());
            DCHECK(user->AsPhi()->IsDead());
          }
        }
        // Remove the phi from use lists of its inputs.
        phi->RemoveAsUserOfAllInputs();
        // Remove the phi from environments that use it.
        for (const HUseListNode<HEnvironment*>& use : phi->GetEnvUses()) {
          HEnvironment* user = use.GetUser();
          user->SetRawEnvAt(use.GetIndex(), nullptr);
        }
        // Delete it from the instruction list.
        block->RemovePhi(phi, /*ensure_safety=*/ false);
      }
      current = next;
    }
  }
}

bool SsaRedundantPhiElimination::Run() {
  // Use local allocator for allocating memory used by this optimization.
  ScopedArenaAllocator allocator(graph_->GetArenaStack());

  static constexpr size_t kDefaultWorklistSize = 8;
  ScopedArenaVector<HPhi*> worklist(allocator.Adapter(kArenaAllocSsaPhiElimination));
  worklist.reserve(kDefaultWorklistSize);

  // Add all phis in the worklist. Order does not matter for correctness, and
  // neither will necessarily converge faster.
  for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
      worklist.push_back(inst_it.Current()->AsPhi());
    }
  }

  ArenaBitVector visited_phis_in_cycle(&allocator,
                                       graph_->GetCurrentInstructionId(),
                                       /* expandable= */ false,
                                       kArenaAllocSsaPhiElimination);
  visited_phis_in_cycle.ClearAllBits();
  ScopedArenaVector<HPhi*> cycle_worklist(allocator.Adapter(kArenaAllocSsaPhiElimination));

  while (!worklist.empty()) {
    HPhi* phi = worklist.back();
    worklist.pop_back();

    // If the phi has already been processed, continue.
    if (!phi->IsInBlock()) {
      continue;
    }

    // If the phi is dead, we know we won't revive it and it will be removed,
    // so don't process it.
    if (phi->IsDead()) {
      continue;
    }

    HInstruction* candidate = nullptr;
    visited_phis_in_cycle.ClearAllBits();
    cycle_worklist.clear();

    cycle_worklist.push_back(phi);
    visited_phis_in_cycle.SetBit(phi->GetId());
    bool catch_phi_in_cycle = phi->IsCatchPhi();
    bool irreducible_loop_phi_in_cycle = phi->IsIrreducibleLoopHeaderPhi();

    // First do a simple loop over inputs and check if they are all the same.
    for (HInstruction* input : phi->GetInputs()) {
      if (input == phi) {
        continue;
      } else if (candidate == nullptr) {
        candidate = input;
      } else if (candidate != input) {
        candidate = nullptr;
        break;
      }
    }

    // If we haven't found a candidate, check for a phi cycle. Note that we need to detect
    // such cycles to avoid having reference and non-reference equivalents. We check this
    // invariant in the graph checker.
    if (candidate == nullptr) {
      // We iterate over the array as long as it grows.
      for (size_t i = 0; i < cycle_worklist.size(); ++i) {
        HPhi* current = cycle_worklist[i];
        DCHECK_IMPLIES(current->IsLoopHeaderPhi(),
                       current->GetBlock()->IsLoopPreHeaderFirstPredecessor());

        for (HInstruction* input : current->GetInputs()) {
          if (input == current) {
            continue;
          } else if (input->IsPhi()) {
            if (!visited_phis_in_cycle.IsBitSet(input->GetId())) {
              cycle_worklist.push_back(input->AsPhi());
              visited_phis_in_cycle.SetBit(input->GetId());
              catch_phi_in_cycle |= input->AsPhi()->IsCatchPhi();
              irreducible_loop_phi_in_cycle |= input->IsIrreducibleLoopHeaderPhi();
            } else {
              // Already visited, nothing to do.
            }
          } else if (candidate == nullptr) {
            candidate = input;
          } else if (candidate != input) {
            candidate = nullptr;
            // Clear the cycle worklist to break out of the outer loop.
            cycle_worklist.clear();
            break;
          }
        }
      }
    }

    if (candidate == nullptr) {
      continue;
    }

    if (irreducible_loop_phi_in_cycle && !candidate->IsConstant()) {
      // For irreducible loops, we need to keep the phis to satisfy our linear scan
      // algorithm.
      // There is one exception for constants, as the type propagation requires redundant
      // cyclic phis of a constant to be removed. This is ok for the linear scan as it
      // has to deal with constants anyway, and they can trivially be rematerialized.
      continue;
    }

    for (HPhi* current : cycle_worklist) {
      // The candidate may not dominate a phi in a catch block: there may be non-throwing
      // instructions at the beginning of a try range, that may be the first input of
      // catch phis.
      // TODO(dbrazdil): Remove this situation by moving those non-throwing instructions
      // before the try entry.
      if (catch_phi_in_cycle) {
        if (!candidate->StrictlyDominates(current)) {
          continue;
        }
      } else {
        DCHECK(candidate->StrictlyDominates(current));
      }

      // Because we're updating the users of this phi, we may have new candidates
      // for elimination. Add phis that use this phi to the worklist.
      for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
        HInstruction* user = use.GetUser();
        if (user->IsPhi() && !visited_phis_in_cycle.IsBitSet(user->GetId())) {
          worklist.push_back(user->AsPhi());
        }
      }
      DCHECK(candidate->StrictlyDominates(current));
      current->ReplaceWith(candidate);
      current->GetBlock()->RemovePhi(current);
    }
  }
  return true;
}

}  // namespace art