File: interpolator.cpp

package info (click to toggle)
android-platform-development 7.0.0%2Br33-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 30,092 kB
  • sloc: ansic: 161,291; java: 15,681; cpp: 7,721; xml: 6,419; python: 5,456; sh: 1,748; lisp: 261; ruby: 183; asm: 132; perl: 88; makefile: 22
file content (181 lines) | stat: -rw-r--r-- 4,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * Copyright 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "interpolator.h"
#include <math.h>
#include "interpolator.h"

namespace ndk_helper
{

//-------------------------------------------------
//Ctor
//-------------------------------------------------
Interpolator::Interpolator()
{
    list_params_.clear();
}

//-------------------------------------------------
//Dtor
//-------------------------------------------------
Interpolator::~Interpolator()
{
    list_params_.clear();
}

void Interpolator::Clear()
{
    list_params_.clear();
}

Interpolator& Interpolator::Set( const float start,
        const float dest,
        const INTERPOLATOR_TYPE type,
        const double duration )
{
    //init the parameters for the interpolation process
    start_time_ = PerfMonitor::GetCurrentTime();
    dest_time_ = start_time_ + duration;
    type_ = type;

    start_value_ = start;
    dest_value_ = dest;
    return *this;
}

Interpolator& Interpolator::Add( const float dest,
        const INTERPOLATOR_TYPE type,
        const double duration )
{
    InterpolatorParams param;
    param.dest_value_ = dest;
    param.type_ = type;
    param.duration_ = duration;
    list_params_.push_back( param );
    return *this;
}

bool Interpolator::Update( const double current_time, float& p )
{
    bool bContinue;
    if( current_time >= dest_time_ )
    {
        p = dest_value_;
        if( list_params_.size() )
        {
            InterpolatorParams& item = list_params_.front();
            Set( dest_value_, item.dest_value_, item.type_, item.duration_ );
            list_params_.pop_front();

            bContinue = true;
        }
        else
        {
            bContinue = false;
        }
    }
    else
    {
        float t = (float) (current_time - start_time_);
        float d = (float) (dest_time_ - start_time_);
        float b = start_value_;
        float c = dest_value_ - start_value_;
        p = GetFormula( type_, t, b, d, c );

        bContinue = true;
    }
    return bContinue;
}

float Interpolator::GetFormula( const INTERPOLATOR_TYPE type,
        const float t,
        const float b,
        const float d,
        const float c )
{
    float t1;
    switch( type )
    {
    case INTERPOLATOR_TYPE_LINEAR:
        // simple linear interpolation - no easing
        return (c * t / d + b);

    case INTERPOLATOR_TYPE_EASEINQUAD:
        // quadratic (t^2) easing in - accelerating from zero velocity
        t1 = t / d;
        return (c * t1 * t1 + b);

    case INTERPOLATOR_TYPE_EASEOUTQUAD:
        // quadratic (t^2) easing out - decelerating to zero velocity
        t1 = t / d;
        return (-c * t1 * (t1 - 2) + b);

    case INTERPOLATOR_TYPE_EASEINOUTQUAD:
        // quadratic easing in/out - acceleration until halfway, then deceleration
        t1 = t / d / 2;
        if( t1 < 1 )
            return (c / 2 * t1 * t1 + b);
        else
        {
            t1 = t1 - 1;
            return (-c / 2 * (t1 * (t1 - 2) - 1) + b);
        }
    case INTERPOLATOR_TYPE_EASEINCUBIC:
        // cubic easing in - accelerating from zero velocity
        t1 = t / d;
        return (c * t1 * t1 * t1 + b);

    case INTERPOLATOR_TYPE_EASEOUTCUBIC:
        // cubic easing in - accelerating from zero velocity
        t1 = t / d - 1;
        return (c * (t1 * t1 * t1 + 1) + b);

    case INTERPOLATOR_TYPE_EASEINOUTCUBIC:
        // cubic easing in - accelerating from zero velocity
        t1 = t / d / 2;

        if( t1 < 1 )
            return (c / 2 * t1 * t1 * t1 + b);
        else
        {
            t1 -= 2;
            return (c / 2 * (t1 * t1 * t1 + 2) + b);
        }
    case INTERPOLATOR_TYPE_EASEINQUART:
        // quartic easing in - accelerating from zero velocity
        t1 = t / d;
        return (c * t1 * t1 * t1 * t1 + b);

    case INTERPOLATOR_TYPE_EASEINEXPO:
        // exponential (2^t) easing in - accelerating from zero velocity
        if( t == 0 )
            return b;
        else
            return (c * powf( 2, (10 * (t / d - 1)) ) + b);

    case INTERPOLATOR_TYPE_EASEOUTEXPO:
        // exponential (2^t) easing out - decelerating to zero velocity
        if( t == d )
            return (b + c);
        else
            return (c * (-powf( 2, -10 * t / d ) + 1) + b);
    default:
        return 0;
    }
}

}   //namespace ndkHelper