1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
#!/usr/bin/python
#
# Copyright (C) 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module for looking up symbolic debugging information.
The information can include symbol names, offsets, and source locations.
"""
import glob
import os
import platform
import re
import subprocess
import unittest
ANDROID_BUILD_TOP = os.environ["ANDROID_BUILD_TOP"]
if not ANDROID_BUILD_TOP:
ANDROID_BUILD_TOP = "."
def FindSymbolsDir():
saveddir = os.getcwd()
os.chdir(ANDROID_BUILD_TOP)
try:
cmd = ("CALLED_FROM_SETUP=true BUILD_SYSTEM=build/core "
"SRC_TARGET_DIR=build/target make -f build/core/config.mk "
"dumpvar-abs-TARGET_OUT_UNSTRIPPED")
stream = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).stdout
return os.path.join(ANDROID_BUILD_TOP, stream.read().strip())
finally:
os.chdir(saveddir)
SYMBOLS_DIR = FindSymbolsDir()
ARCH = None
# These are private. Do not access them from other modules.
_CACHED_TOOLCHAIN = None
_CACHED_TOOLCHAIN_ARCH = None
def ToolPath(tool, toolchain=None):
"""Return a fully-qualified path to the specified tool"""
if not toolchain:
toolchain = FindToolchain()
return glob.glob(os.path.join(toolchain, "*-" + tool))[0]
def FindToolchain():
"""Returns the toolchain matching ARCH."""
global _CACHED_TOOLCHAIN, _CACHED_TOOLCHAIN_ARCH
if _CACHED_TOOLCHAIN is not None and _CACHED_TOOLCHAIN_ARCH == ARCH:
return _CACHED_TOOLCHAIN
# We use slightly different names from GCC, and there's only one toolchain
# for x86/x86_64. Note that these are the names of the top-level directory
# rather than the _different_ names used lower down the directory hierarchy!
gcc_dir = ARCH
if gcc_dir == "arm64":
gcc_dir = "aarch64"
elif gcc_dir == "mips64":
gcc_dir = "mips"
elif gcc_dir == "x86_64":
gcc_dir = "x86"
os_name = platform.system().lower();
available_toolchains = glob.glob("%s/prebuilts/gcc/%s-x86/%s/*-linux-*/bin/" % (ANDROID_BUILD_TOP, os_name, gcc_dir))
if len(available_toolchains) == 0:
raise Exception("Could not find tool chain for %s" % (ARCH))
toolchain = sorted(available_toolchains)[-1]
if not os.path.exists(ToolPath("addr2line", toolchain)):
raise Exception("No addr2line for %s" % (toolchain))
_CACHED_TOOLCHAIN = toolchain
_CACHED_TOOLCHAIN_ARCH = ARCH
print "Using %s toolchain from: %s" % (_CACHED_TOOLCHAIN_ARCH, _CACHED_TOOLCHAIN)
return _CACHED_TOOLCHAIN
def SymbolInformation(lib, addr):
"""Look up symbol information about an address.
Args:
lib: library (or executable) pathname containing symbols
addr: string hexidecimal address
Returns:
A list of the form [(source_symbol, source_location,
object_symbol_with_offset)].
If the function has been inlined then the list may contain
more than one element with the symbols for the most deeply
nested inlined location appearing first. The list is
always non-empty, even if no information is available.
Usually you want to display the source_location and
object_symbol_with_offset from the last element in the list.
"""
info = SymbolInformationForSet(lib, set([addr]))
return (info and info.get(addr)) or [(None, None, None)]
def SymbolInformationForSet(lib, unique_addrs):
"""Look up symbol information for a set of addresses from the given library.
Args:
lib: library (or executable) pathname containing symbols
unique_addrs: set of hexidecimal addresses
Returns:
A dictionary of the form {addr: [(source_symbol, source_location,
object_symbol_with_offset)]} where each address has a list of
associated symbols and locations. The list is always non-empty.
If the function has been inlined then the list may contain
more than one element with the symbols for the most deeply
nested inlined location appearing first. The list is
always non-empty, even if no information is available.
Usually you want to display the source_location and
object_symbol_with_offset from the last element in the list.
"""
if not lib:
return None
addr_to_line = CallAddr2LineForSet(lib, unique_addrs)
if not addr_to_line:
return None
addr_to_objdump = CallObjdumpForSet(lib, unique_addrs)
if not addr_to_objdump:
return None
result = {}
for addr in unique_addrs:
source_info = addr_to_line.get(addr)
if not source_info:
source_info = [(None, None)]
if addr in addr_to_objdump:
(object_symbol, object_offset) = addr_to_objdump.get(addr)
object_symbol_with_offset = FormatSymbolWithOffset(object_symbol,
object_offset)
else:
object_symbol_with_offset = None
result[addr] = [(source_symbol, source_location, object_symbol_with_offset)
for (source_symbol, source_location) in source_info]
return result
def CallAddr2LineForSet(lib, unique_addrs):
"""Look up line and symbol information for a set of addresses.
Args:
lib: library (or executable) pathname containing symbols
unique_addrs: set of string hexidecimal addresses look up.
Returns:
A dictionary of the form {addr: [(symbol, file:line)]} where
each address has a list of associated symbols and locations
or an empty list if no symbol information was found.
If the function has been inlined then the list may contain
more than one element with the symbols for the most deeply
nested inlined location appearing first.
"""
if not lib:
return None
symbols = SYMBOLS_DIR + lib
if not os.path.exists(symbols):
symbols = lib
if not os.path.exists(symbols):
return None
cmd = [ToolPath("addr2line"), "--functions", "--inlines",
"--demangle", "--exe=" + symbols]
child = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = {}
addrs = sorted(unique_addrs)
for addr in addrs:
child.stdin.write("0x%s\n" % addr)
child.stdin.flush()
records = []
first = True
while True:
symbol = child.stdout.readline().strip()
if symbol == "??":
symbol = None
location = child.stdout.readline().strip()
if location == "??:0" or location == "??:?":
location = None
if symbol is None and location is None:
break
records.append((symbol, location))
if first:
# Write a blank line as a sentinel so we know when to stop
# reading inlines from the output.
# The blank line will cause addr2line to emit "??\n??:0\n".
child.stdin.write("\n")
first = False
result[addr] = records
child.stdin.close()
child.stdout.close()
return result
def StripPC(addr):
"""Strips the Thumb bit a program counter address when appropriate.
Args:
addr: the program counter address
Returns:
The stripped program counter address.
"""
global ARCH
if ARCH == "arm":
return addr & ~1
return addr
def CallObjdumpForSet(lib, unique_addrs):
"""Use objdump to find out the names of the containing functions.
Args:
lib: library (or executable) pathname containing symbols
unique_addrs: set of string hexidecimal addresses to find the functions for.
Returns:
A dictionary of the form {addr: (string symbol, offset)}.
"""
if not lib:
return None
symbols = SYMBOLS_DIR + lib
if not os.path.exists(symbols):
symbols = lib
if not os.path.exists(symbols):
return None
addrs = sorted(unique_addrs)
start_addr_dec = str(StripPC(int(addrs[0], 16)))
stop_addr_dec = str(StripPC(int(addrs[-1], 16)) + 8)
cmd = [ToolPath("objdump"),
"--section=.text",
"--demangle",
"--disassemble",
"--start-address=" + start_addr_dec,
"--stop-address=" + stop_addr_dec,
symbols]
# Function lines look like:
# 000177b0 <android::IBinder::~IBinder()+0x2c>:
# We pull out the address and function first. Then we check for an optional
# offset. This is tricky due to functions that look like "operator+(..)+0x2c"
func_regexp = re.compile("(^[a-f0-9]*) \<(.*)\>:$")
offset_regexp = re.compile("(.*)\+0x([a-f0-9]*)")
# A disassembly line looks like:
# 177b2: b510 push {r4, lr}
asm_regexp = re.compile("(^[ a-f0-9]*):[ a-f0-0]*.*$")
current_symbol = None # The current function symbol in the disassembly.
current_symbol_addr = 0 # The address of the current function.
addr_index = 0 # The address that we are currently looking for.
stream = subprocess.Popen(cmd, stdout=subprocess.PIPE).stdout
result = {}
for line in stream:
# Is it a function line like:
# 000177b0 <android::IBinder::~IBinder()>:
components = func_regexp.match(line)
if components:
# This is a new function, so record the current function and its address.
current_symbol_addr = int(components.group(1), 16)
current_symbol = components.group(2)
# Does it have an optional offset like: "foo(..)+0x2c"?
components = offset_regexp.match(current_symbol)
if components:
current_symbol = components.group(1)
offset = components.group(2)
if offset:
current_symbol_addr -= int(offset, 16)
# Is it an disassembly line like:
# 177b2: b510 push {r4, lr}
components = asm_regexp.match(line)
if components:
addr = components.group(1)
target_addr = addrs[addr_index]
i_addr = int(addr, 16)
i_target = StripPC(int(target_addr, 16))
if i_addr == i_target:
result[target_addr] = (current_symbol, i_target - current_symbol_addr)
addr_index += 1
if addr_index >= len(addrs):
break
stream.close()
return result
def CallCppFilt(mangled_symbol):
cmd = [ToolPath("c++filt")]
process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
process.stdin.write(mangled_symbol)
process.stdin.write("\n")
process.stdin.close()
demangled_symbol = process.stdout.readline().strip()
process.stdout.close()
return demangled_symbol
def FormatSymbolWithOffset(symbol, offset):
if offset == 0:
return symbol
return "%s+%d" % (symbol, offset)
def GetAbiFromToolchain(toolchain_var, bits):
toolchain = os.environ.get(toolchain_var)
if not toolchain:
return None
toolchain_match = re.search("\/(aarch64|arm|mips|x86)\/", toolchain)
if toolchain_match:
abi = toolchain_match.group(1)
if abi == "aarch64":
return "arm64"
elif bits == 64:
if abi == "x86":
return "x86_64"
elif abi == "mips":
return "mips64"
return abi
return None
def SetAbi(lines):
global ARCH
abi_line = re.compile("ABI: \'(.*)\'")
trace_line = re.compile("\#[0-9]+[ \t]+..[ \t]+([0-9a-f]{8}|[0-9a-f]{16})([ \t]+|$)")
ARCH = None
for line in lines:
abi_match = abi_line.search(line)
if abi_match:
ARCH = abi_match.group(1)
break
trace_match = trace_line.search(line)
if trace_match:
# Try to guess the arch, we know the bitness.
if len(trace_match.group(1)) == 16:
# 64 bit
# Check for ANDROID_TOOLCHAIN, if it is set, we can figure out the
# arch this way. If this is not set, then default to arm64.
ARCH = GetAbiFromToolchain("ANDROID_TOOLCHAIN", 64)
if not ARCH:
ARCH = "arm64"
else:
# 32 bit
# Check for ANDROID_TOOLCHAIN_2ND_ARCH first, if set, use that.
# If not try ANDROID_TOOLCHAIN to find the arch.
# If this is not set, then default to arm.
ARCH = GetAbiFromToolchain("ANDROID_TOOLCHAIN_2ND_ARCH", 32)
if not ARCH:
ARCH = GetAbiFromToolchain("ANDROID_TOOLCHAIN", 32)
if not ARCH:
ARCH = "arm"
break
if not ARCH:
raise Exception("Could not determine arch from input")
class FindToolchainTests(unittest.TestCase):
def assert_toolchain_found(self, abi):
global ARCH
ARCH = abi
FindToolchain() # Will throw on failure.
def test_toolchains_found(self):
self.assert_toolchain_found("arm")
self.assert_toolchain_found("arm64")
self.assert_toolchain_found("mips")
self.assert_toolchain_found("x86")
self.assert_toolchain_found("x86_64")
class SetArchTests(unittest.TestCase):
def test_abi_check(self):
global ARCH
SetAbi(["ABI: 'arm'"])
self.assertEqual(ARCH, "arm")
SetAbi(["ABI: 'arm64'"])
self.assertEqual(ARCH, "arm64")
SetAbi(["ABI: 'mips'"])
self.assertEqual(ARCH, "mips")
SetAbi(["ABI: 'mips64'"])
self.assertEqual(ARCH, "mips64")
SetAbi(["ABI: 'x86'"])
self.assertEqual(ARCH, "x86")
SetAbi(["ABI: 'x86_64'"])
self.assertEqual(ARCH, "x86_64")
def test_32bit_trace_line_toolchain(self):
global ARCH
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/arm/arm-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "arm")
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/mips/arm-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "mips")
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "x86")
def test_32bit_trace_line_toolchain_2nd(self):
global ARCH
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/arm/arm-linux-androideabi-4.9/bin"
os.environ["ANDROID_TOOLCHAIN_ARCH"] = "linux-x86/aarch64/aarch64-linux-android-4.9/bin"
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "arm")
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/mips/mips-linux-androideabi-4.9/bin"
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/unknown/unknown-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "mips")
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/x86/x86-linux-androideabi-4.9/bin"
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/unknown/unknown-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "x86")
def test_64bit_trace_line_toolchain(self):
global ARCH
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/aarch/aarch-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 00000000000374e0"])
self.assertEqual(ARCH, "arm64")
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/mips/arm-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 00000000000374e0"])
self.assertEqual(ARCH, "mips64")
os.environ.clear()
os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin"
SetAbi(["#00 pc 00000000000374e0"])
self.assertEqual(ARCH, "x86_64")
def test_default_abis(self):
global ARCH
os.environ.clear()
SetAbi(["#00 pc 000374e0"])
self.assertEqual(ARCH, "arm")
SetAbi(["#00 pc 00000000000374e0"])
self.assertEqual(ARCH, "arm64")
def test_no_abi(self):
global ARCH
self.assertRaisesRegexp(Exception, "Could not determine arch from input", SetAbi, [])
if __name__ == '__main__':
unittest.main()
|