File: VectorDrawable.cpp

package info (click to toggle)
android-platform-frameworks-base 1%3A10.0.0%2Br36-10
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 322,016 kB
  • sloc: java: 962,234; cpp: 274,298; xml: 242,770; python: 5,060; sh: 1,432; ansic: 494; makefile: 54; sed: 19
file content (710 lines) | stat: -rw-r--r-- 25,793 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "VectorDrawable.h"

#include <utils/Log.h>
#include "PathParser.h"
#include "SkColorFilter.h"
#include "SkImageInfo.h"
#include "SkShader.h"
#include "utils/Macros.h"
#include "utils/TraceUtils.h"
#include "utils/VectorDrawableUtils.h"

#include <math.h>
#include <string.h>

namespace android {
namespace uirenderer {
namespace VectorDrawable {

const int Tree::MAX_CACHED_BITMAP_SIZE = 2048;

void Path::dump() {
    ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size());
}

// Called from UI thread during the initial setup/theme change.
Path::Path(const char* pathStr, size_t strLength) {
    PathParser::ParseResult result;
    Data data;
    PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength);
    mStagingProperties.setData(data);
}

Path::Path(const Path& path) : Node(path) {
    mStagingProperties.syncProperties(path.mStagingProperties);
}

const SkPath& Path::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) {
    if (useStagingData) {
        tempStagingPath->reset();
        VectorDrawableUtils::verbsToPath(tempStagingPath, mStagingProperties.getData());
        return *tempStagingPath;
    } else {
        if (mSkPathDirty) {
            mSkPath.reset();
            VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData());
            mSkPathDirty = false;
        }
        return mSkPath;
    }
}

void Path::syncProperties() {
    if (mStagingPropertiesDirty) {
        mProperties.syncProperties(mStagingProperties);
    } else {
        mStagingProperties.syncProperties(mProperties);
    }
    mStagingPropertiesDirty = false;
}

FullPath::FullPath(const FullPath& path) : Path(path) {
    mStagingProperties.syncProperties(path.mStagingProperties);
}

static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd,
                      float trimPathOffset) {
    if (trimPathStart == 0.0f && trimPathEnd == 1.0f) {
        *outPath = inPath;
        return;
    }
    outPath->reset();
    if (trimPathStart == trimPathEnd) {
        // Trimmed path should be empty.
        return;
    }
    SkPathMeasure measure(inPath, false);
    float len = SkScalarToFloat(measure.getLength());
    float start = len * fmod((trimPathStart + trimPathOffset), 1.0f);
    float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f);

    if (start > end) {
        measure.getSegment(start, len, outPath, true);
        if (end > 0) {
            measure.getSegment(0, end, outPath, true);
        }
    } else {
        measure.getSegment(start, end, outPath, true);
    }
}

const SkPath& FullPath::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) {
    if (!useStagingData && !mSkPathDirty && !mProperties.mTrimDirty) {
        return mTrimmedSkPath;
    }
    Path::getUpdatedPath(useStagingData, tempStagingPath);
    SkPath* outPath;
    if (useStagingData) {
        SkPath inPath = *tempStagingPath;
        applyTrim(tempStagingPath, inPath, mStagingProperties.getTrimPathStart(),
                  mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset());
        outPath = tempStagingPath;
    } else {
        if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) {
            mProperties.mTrimDirty = false;
            applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(),
                      mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset());
            outPath = &mTrimmedSkPath;
        } else {
            outPath = &mSkPath;
        }
    }
    const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties;
    bool setFillPath = properties.getFillGradient() != nullptr ||
                       properties.getFillColor() != SK_ColorTRANSPARENT;
    if (setFillPath) {
        SkPath::FillType ft = static_cast<SkPath::FillType>(properties.getFillType());
        outPath->setFillType(ft);
    }
    return *outPath;
}

void FullPath::dump() {
    Path::dump();
    ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f",
          mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(),
          mProperties.getFillColor(), mProperties.getFillAlpha());
}

inline SkColor applyAlpha(SkColor color, float alpha) {
    int alphaBytes = SkColorGetA(color);
    return SkColorSetA(color, alphaBytes * alpha);
}

void FullPath::draw(SkCanvas* outCanvas, bool useStagingData) {
    const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties;
    SkPath tempStagingPath;
    const SkPath& renderPath = getUpdatedPath(useStagingData, &tempStagingPath);

    // Draw path's fill, if fill color or gradient is valid
    bool needsFill = false;
    SkPaint paint;
    if (properties.getFillGradient() != nullptr) {
        paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha()));
        paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getFillGradient())));
        needsFill = true;
    } else if (properties.getFillColor() != SK_ColorTRANSPARENT) {
        paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha()));
        needsFill = true;
    }

    if (needsFill) {
        paint.setStyle(SkPaint::Style::kFill_Style);
        paint.setAntiAlias(mAntiAlias);
        outCanvas->drawPath(renderPath, paint);
    }

    // Draw path's stroke, if stroke color or Gradient is valid
    bool needsStroke = false;
    if (properties.getStrokeGradient() != nullptr) {
        paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha()));
        paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getStrokeGradient())));
        needsStroke = true;
    } else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) {
        paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha()));
        needsStroke = true;
    }
    if (needsStroke) {
        paint.setStyle(SkPaint::Style::kStroke_Style);
        paint.setAntiAlias(mAntiAlias);
        paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin()));
        paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap()));
        paint.setStrokeMiter(properties.getStrokeMiterLimit());
        paint.setStrokeWidth(properties.getStrokeWidth());
        outCanvas->drawPath(renderPath, paint);
    }
}

void FullPath::syncProperties() {
    Path::syncProperties();

    if (mStagingPropertiesDirty) {
        mProperties.syncProperties(mStagingProperties);
    } else {
        // Update staging property with property values from animation.
        mStagingProperties.syncProperties(mProperties);
    }
    mStagingPropertiesDirty = false;
}

REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields);

static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t");
static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t");

bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const {
    int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields);
    if (length != propertyDataSize) {
        LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
                         propertyDataSize, length);
        return false;
    }

    PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties);
    *out = mPrimitiveFields;
    return true;
}

void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) {
    Property currentProperty = static_cast<Property>(propertyId);
    if (currentProperty == Property::strokeColor) {
        setStrokeColor(value);
    } else if (currentProperty == Property::fillColor) {
        setFillColor(value);
    } else {
        LOG_ALWAYS_FATAL(
                "Error setting color property on FullPath: No valid property"
                " with id: %d",
                propertyId);
    }
}

void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) {
    Property property = static_cast<Property>(propertyId);
    switch (property) {
        case Property::strokeWidth:
            setStrokeWidth(value);
            break;
        case Property::strokeAlpha:
            setStrokeAlpha(value);
            break;
        case Property::fillAlpha:
            setFillAlpha(value);
            break;
        case Property::trimPathStart:
            setTrimPathStart(value);
            break;
        case Property::trimPathEnd:
            setTrimPathEnd(value);
            break;
        case Property::trimPathOffset:
            setTrimPathOffset(value);
            break;
        default:
            LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId);
            break;
    }
}

void ClipPath::draw(SkCanvas* outCanvas, bool useStagingData) {
    SkPath tempStagingPath;
    outCanvas->clipPath(getUpdatedPath(useStagingData, &tempStagingPath));
}

Group::Group(const Group& group) : Node(group) {
    mStagingProperties.syncProperties(group.mStagingProperties);
}

void Group::draw(SkCanvas* outCanvas, bool useStagingData) {
    // Save the current clip and matrix information, which is local to this group.
    SkAutoCanvasRestore saver(outCanvas, true);
    // apply the current group's matrix to the canvas
    SkMatrix stackedMatrix;
    const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties;
    getLocalMatrix(&stackedMatrix, prop);
    outCanvas->concat(stackedMatrix);
    // Draw the group tree in the same order as the XML file.
    for (auto& child : mChildren) {
        child->draw(outCanvas, useStagingData);
    }
    // Restore the previous clip and matrix information.
}

void Group::dump() {
    ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size());
    ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(),
          mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY());
    for (size_t i = 0; i < mChildren.size(); i++) {
        mChildren[i]->dump();
    }
}

void Group::syncProperties() {
    // Copy over the dirty staging properties
    if (mStagingPropertiesDirty) {
        mProperties.syncProperties(mStagingProperties);
    } else {
        mStagingProperties.syncProperties(mProperties);
    }
    mStagingPropertiesDirty = false;
    for (auto& child : mChildren) {
        child->syncProperties();
    }
}

void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) {
    outMatrix->reset();
    // TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of
    // translating to pivot for rotating and scaling, then translating back.
    outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY());
    outMatrix->postScale(properties.getScaleX(), properties.getScaleY());
    outMatrix->postRotate(properties.getRotation(), 0, 0);
    outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(),
                             properties.getTranslateY() + properties.getPivotY());
}

void Group::addChild(Node* child) {
    mChildren.emplace_back(child);
    if (mPropertyChangedListener != nullptr) {
        child->setPropertyChangedListener(mPropertyChangedListener);
    }
}

bool Group::GroupProperties::copyProperties(float* outProperties, int length) const {
    int propertyCount = static_cast<int>(Property::count);
    if (length != propertyCount) {
        LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
                         propertyCount, length);
        return false;
    }

    PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties);
    *out = mPrimitiveFields;
    return true;
}

// TODO: Consider animating the properties as float pointers
// Called on render thread
float Group::GroupProperties::getPropertyValue(int propertyId) const {
    Property currentProperty = static_cast<Property>(propertyId);
    switch (currentProperty) {
        case Property::rotate:
            return getRotation();
        case Property::pivotX:
            return getPivotX();
        case Property::pivotY:
            return getPivotY();
        case Property::scaleX:
            return getScaleX();
        case Property::scaleY:
            return getScaleY();
        case Property::translateX:
            return getTranslateX();
        case Property::translateY:
            return getTranslateY();
        default:
            LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId);
            return 0;
    }
}

// Called on render thread
void Group::GroupProperties::setPropertyValue(int propertyId, float value) {
    Property currentProperty = static_cast<Property>(propertyId);
    switch (currentProperty) {
        case Property::rotate:
            setRotation(value);
            break;
        case Property::pivotX:
            setPivotX(value);
            break;
        case Property::pivotY:
            setPivotY(value);
            break;
        case Property::scaleX:
            setScaleX(value);
            break;
        case Property::scaleY:
            setScaleY(value);
            break;
        case Property::translateX:
            setTranslateX(value);
            break;
        case Property::translateY:
            setTranslateY(value);
            break;
        default:
            LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId);
    }
}

bool Group::isValidProperty(int propertyId) {
    return GroupProperties::isValidProperty(propertyId);
}

bool Group::GroupProperties::isValidProperty(int propertyId) {
    return propertyId >= 0 && propertyId < static_cast<int>(Property::count);
}

int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, const SkRect& bounds,
               bool needsMirroring, bool canReuseCache) {
    // The imageView can scale the canvas in different ways, in order to
    // avoid blurry scaling, we have to draw into a bitmap with exact pixel
    // size first. This bitmap size is determined by the bounds and the
    // canvas scale.
    SkMatrix canvasMatrix;
    outCanvas->getMatrix(&canvasMatrix);
    float canvasScaleX = 1.0f;
    float canvasScaleY = 1.0f;
    if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) {
        // Only use the scale value when there's no skew or rotation in the canvas matrix.
        // TODO: Add a cts test for drawing VD on a canvas with negative scaling factors.
        canvasScaleX = fabs(canvasMatrix.getScaleX());
        canvasScaleY = fabs(canvasMatrix.getScaleY());
    }
    int scaledWidth = (int)(bounds.width() * canvasScaleX);
    int scaledHeight = (int)(bounds.height() * canvasScaleY);
    scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth);
    scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight);

    if (scaledWidth <= 0 || scaledHeight <= 0) {
        return 0;
    }

    mStagingProperties.setScaledSize(scaledWidth, scaledHeight);
    int saveCount = outCanvas->save(SaveFlags::MatrixClip);
    outCanvas->translate(bounds.fLeft, bounds.fTop);

    // Handle RTL mirroring.
    if (needsMirroring) {
        outCanvas->translate(bounds.width(), 0);
        outCanvas->scale(-1.0f, 1.0f);
    }
    mStagingProperties.setColorFilter(colorFilter);

    // At this point, canvas has been translated to the right position.
    // And we use this bound for the destination rect for the drawBitmap, so
    // we offset to (0, 0);
    SkRect tmpBounds = bounds;
    tmpBounds.offsetTo(0, 0);
    mStagingProperties.setBounds(tmpBounds);
    outCanvas->drawVectorDrawable(this);
    outCanvas->restoreToCount(saveCount);
    return scaledWidth * scaledHeight;
}

void Tree::drawStaging(Canvas* outCanvas) {
    bool redrawNeeded = allocateBitmapIfNeeded(mStagingCache, mStagingProperties.getScaledWidth(),
                                               mStagingProperties.getScaledHeight());
    // draw bitmap cache
    if (redrawNeeded || mStagingCache.dirty) {
        updateBitmapCache(*mStagingCache.bitmap, true);
        mStagingCache.dirty = false;
    }

    SkPaint paint;
    getPaintFor(&paint, mStagingProperties);
    outCanvas->drawBitmap(*mStagingCache.bitmap, 0, 0, mStagingCache.bitmap->width(),
                          mStagingCache.bitmap->height(), mStagingProperties.getBounds().left(),
                          mStagingProperties.getBounds().top(),
                          mStagingProperties.getBounds().right(),
                          mStagingProperties.getBounds().bottom(), &paint);
}

void Tree::getPaintFor(SkPaint* outPaint, const TreeProperties &prop) const {
    // HWUI always draws VD with bilinear filtering.
    outPaint->setFilterQuality(kLow_SkFilterQuality);
    if (prop.getColorFilter() != nullptr) {
        outPaint->setColorFilter(sk_ref_sp(prop.getColorFilter()));
    }
    outPaint->setAlpha(prop.getRootAlpha() * 255);
}

Bitmap& Tree::getBitmapUpdateIfDirty() {
    bool redrawNeeded = allocateBitmapIfNeeded(mCache, mProperties.getScaledWidth(),
                                               mProperties.getScaledHeight());
    if (redrawNeeded || mCache.dirty) {
        updateBitmapCache(*mCache.bitmap, false);
        mCache.dirty = false;
    }
    return *mCache.bitmap;
}

void Tree::updateCache(sp<skiapipeline::VectorDrawableAtlas>& atlas, GrContext* context) {
    SkRect dst;
    sk_sp<SkSurface> surface = mCache.getSurface(&dst);
    bool canReuseSurface = surface && dst.width() >= mProperties.getScaledWidth() &&
                           dst.height() >= mProperties.getScaledHeight();
    if (!canReuseSurface) {
        int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth());
        int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight());
        auto atlasEntry = atlas->requestNewEntry(scaledWidth, scaledHeight, context);
        if (INVALID_ATLAS_KEY != atlasEntry.key) {
            dst = atlasEntry.rect;
            surface = atlasEntry.surface;
            mCache.setAtlas(atlas, atlasEntry.key);
        } else {
            // don't draw, if we failed to allocate an offscreen buffer
            mCache.clear();
            surface.reset();
        }
    }
    if (!canReuseSurface || mCache.dirty) {
        if (surface) {
            Bitmap& bitmap = getBitmapUpdateIfDirty();
            SkBitmap skiaBitmap;
            bitmap.getSkBitmap(&skiaBitmap);
            surface->writePixels(skiaBitmap, dst.fLeft, dst.fTop);
        }
        mCache.dirty = false;
    }
}

void Tree::Cache::setAtlas(sp<skiapipeline::VectorDrawableAtlas> newAtlas,
                           skiapipeline::AtlasKey newAtlasKey) {
    LOG_ALWAYS_FATAL_IF(newAtlasKey == INVALID_ATLAS_KEY);
    clear();
    mAtlas = newAtlas;
    mAtlasKey = newAtlasKey;
}

sk_sp<SkSurface> Tree::Cache::getSurface(SkRect* bounds) {
    sk_sp<SkSurface> surface;
    sp<skiapipeline::VectorDrawableAtlas> atlas = mAtlas.promote();
    if (atlas.get() && mAtlasKey != INVALID_ATLAS_KEY) {
        auto atlasEntry = atlas->getEntry(mAtlasKey);
        *bounds = atlasEntry.rect;
        surface = atlasEntry.surface;
        mAtlasKey = atlasEntry.key;
    }

    return surface;
}

void Tree::Cache::clear() {
    sp<skiapipeline::VectorDrawableAtlas> lockAtlas = mAtlas.promote();
    if (lockAtlas.get()) {
        lockAtlas->releaseEntry(mAtlasKey);
    }
    mAtlas = nullptr;
    mAtlasKey = INVALID_ATLAS_KEY;
}

void Tree::draw(SkCanvas* canvas, const SkRect& bounds, const SkPaint& inPaint) {
    if (canvas->quickReject(bounds)) {
        // The RenderNode is on screen, but the AVD is not.
        return;
    }

    // Update the paint for any animatable properties
    SkPaint paint = inPaint;
    paint.setAlpha(mProperties.getRootAlpha() * 255);

    if (canvas->getGrContext() == nullptr) {
        // Recording to picture, don't use the SkSurface which won't work off of renderthread.
        Bitmap& bitmap = getBitmapUpdateIfDirty();
        SkBitmap skiaBitmap;
        bitmap.getSkBitmap(&skiaBitmap);

        int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth());
        int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight());
        canvas->drawBitmapRect(skiaBitmap, SkRect::MakeWH(scaledWidth, scaledHeight), bounds,
                               &paint, SkCanvas::kFast_SrcRectConstraint);
        return;
    }

    SkRect src;
    sk_sp<SkSurface> vdSurface = mCache.getSurface(&src);
    if (vdSurface) {
        canvas->drawImageRect(vdSurface->makeImageSnapshot().get(), src, bounds, &paint,
                              SkCanvas::kFast_SrcRectConstraint);
    } else {
        // Handle the case when VectorDrawableAtlas has been destroyed, because of memory pressure.
        // We render the VD into a temporary standalone buffer and mark the frame as dirty. Next
        // frame will be cached into the atlas.
        Bitmap& bitmap = getBitmapUpdateIfDirty();
        SkBitmap skiaBitmap;
        bitmap.getSkBitmap(&skiaBitmap);

        int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth());
        int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight());
        canvas->drawBitmapRect(skiaBitmap, SkRect::MakeWH(scaledWidth, scaledHeight), bounds,
                               &paint, SkCanvas::kFast_SrcRectConstraint);
        mCache.clear();
        markDirty();
    }
}

void Tree::updateBitmapCache(Bitmap& bitmap, bool useStagingData) {
    SkBitmap outCache;
    bitmap.getSkBitmap(&outCache);
    int cacheWidth = outCache.width();
    int cacheHeight = outCache.height();
    ATRACE_FORMAT("VectorDrawable repaint %dx%d", cacheWidth, cacheHeight);
    outCache.eraseColor(SK_ColorTRANSPARENT);
    SkCanvas outCanvas(outCache);
    float viewportWidth =
            useStagingData ? mStagingProperties.getViewportWidth() : mProperties.getViewportWidth();
    float viewportHeight = useStagingData ? mStagingProperties.getViewportHeight()
                                          : mProperties.getViewportHeight();
    float scaleX = cacheWidth / viewportWidth;
    float scaleY = cacheHeight / viewportHeight;
    outCanvas.scale(scaleX, scaleY);
    mRootNode->draw(&outCanvas, useStagingData);
}

bool Tree::allocateBitmapIfNeeded(Cache& cache, int width, int height) {
    if (!canReuseBitmap(cache.bitmap.get(), width, height)) {
        SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType);
        cache.bitmap = Bitmap::allocateHeapBitmap(info);
        return true;
    }
    return false;
}

bool Tree::canReuseBitmap(Bitmap* bitmap, int width, int height) {
    return bitmap && width <= bitmap->width() && height <= bitmap->height();
}

void Tree::onPropertyChanged(TreeProperties* prop) {
    if (prop == &mStagingProperties) {
        mStagingCache.dirty = true;
    } else {
        mCache.dirty = true;
    }
}

class MinMaxAverage {
public:
    void add(float sample) {
        if (mCount == 0) {
            mMin = sample;
            mMax = sample;
        } else {
            mMin = std::min(mMin, sample);
            mMax = std::max(mMax, sample);
        }
        mTotal += sample;
        mCount++;
    }

    float average() { return mTotal / mCount; }

    float min() { return mMin; }

    float max() { return mMax; }

    float delta() { return mMax - mMin; }

private:
    float mMin = 0.0f;
    float mMax = 0.0f;
    float mTotal = 0.0f;
    int mCount = 0;
};

BitmapPalette Tree::computePalette() {
    // TODO Cache this and share the code with Bitmap.cpp

    ATRACE_CALL();

    // TODO: This calculation of converting to HSV & tracking min/max is probably overkill
    // Experiment with something simpler since we just want to figure out if it's "color-ful"
    // and then the average perceptual lightness.

    MinMaxAverage hue, saturation, value;
    int sampledCount = 0;

    // Sample a grid of 100 pixels to get an overall estimation of the colors in play
    mRootNode->forEachFillColor([&](SkColor color) {
        if (SkColorGetA(color) < 75) {
            return;
        }
        sampledCount++;
        float hsv[3];
        SkColorToHSV(color, hsv);
        hue.add(hsv[0]);
        saturation.add(hsv[1]);
        value.add(hsv[2]);
    });

    if (sampledCount == 0) {
        ALOGV("VectorDrawable is mostly translucent");
        return BitmapPalette::Unknown;
    }

    ALOGV("samples = %d, hue [min = %f, max = %f, avg = %f]; saturation [min = %f, max = %f, avg = "
          "%f]; value [min = %f, max = %f, avg = %f]",
          sampledCount, hue.min(), hue.max(), hue.average(), saturation.min(), saturation.max(),
          saturation.average(), value.min(), value.max(), value.average());

    if (hue.delta() <= 20 && saturation.delta() <= .1f) {
        if (value.average() >= .5f) {
            return BitmapPalette::Light;
        } else {
            return BitmapPalette::Dark;
        }
    }
    return BitmapPalette::Unknown;
}

}  // namespace VectorDrawable

}  // namespace uirenderer
}  // namespace android