1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include "Blur.h"
#include "MathUtils.h"
namespace android {
namespace uirenderer {
// This constant approximates the scaling done in the software path's
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
static const float BLUR_SIGMA_SCALE = 0.57735f;
float Blur::convertRadiusToSigma(float radius) {
return radius > 0 ? BLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
}
float Blur::convertSigmaToRadius(float sigma) {
return sigma > 0.5f ? (sigma - 0.5f) / BLUR_SIGMA_SCALE : 0.0f;
}
// if the original radius was on an integer boundary and the resulting radius
// is within the conversion error tolerance then we attempt to snap to the
// original integer boundary.
uint32_t Blur::convertRadiusToInt(float radius) {
const float radiusCeil = ceilf(radius);
if (MathUtils::areEqual(radiusCeil, radius)) {
return radiusCeil;
}
return radius;
}
/**
* HWUI has used a slightly different equation than Skia to generate the value
* for sigma and to preserve compatibility we have kept that logic.
*
* Based on some experimental radius and sigma values we approximate the
* equation sigma = f(radius) as sigma = radius * 0.3 + 0.6. The larger the
* radius gets, the more our gaussian blur will resemble a box blur since with
* large sigma the gaussian curve begins to lose its shape.
*/
static float legacyConvertRadiusToSigma(float radius) {
return radius > 0 ? 0.3f * radius + 0.6f : 0.0f;
}
void Blur::generateGaussianWeights(float* weights, float radius) {
int32_t intRadius = convertRadiusToInt(radius);
// Compute gaussian weights for the blur
// e is the euler's number
static float e = 2.718281828459045f;
static float pi = 3.1415926535897932f;
// g(x) = ( 1 / sqrt( 2 * pi ) * sigma) * e ^ ( -x^2 / 2 * sigma^2 )
// x is of the form [-radius .. 0 .. radius]
// and sigma varies with radius.
float sigma = legacyConvertRadiusToSigma(radius);
// Now compute the coefficints
// We will store some redundant values to save some math during
// the blur calculations
// precompute some values
float coeff1 = 1.0f / (sqrt(2.0f * pi) * sigma);
float coeff2 = -1.0f / (2.0f * sigma * sigma);
float normalizeFactor = 0.0f;
for (int32_t r = -intRadius; r <= intRadius; r++) {
float floatR = (float)r;
weights[r + intRadius] = coeff1 * pow(e, floatR * floatR * coeff2);
normalizeFactor += weights[r + intRadius];
}
// Now we need to normalize the weights because all our coefficients need to add up to one
normalizeFactor = 1.0f / normalizeFactor;
for (int32_t r = -intRadius; r <= intRadius; r++) {
weights[r + intRadius] *= normalizeFactor;
}
}
void Blur::horizontal(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest,
int32_t width, int32_t height) {
float blurredPixel = 0.0f;
float currentPixel = 0.0f;
for (int32_t y = 0; y < height; y++) {
const uint8_t* input = source + y * width;
uint8_t* output = dest + y * width;
for (int32_t x = 0; x < width; x++) {
blurredPixel = 0.0f;
const float* gPtr = weights;
// Optimization for non-border pixels
if (x > radius && x < (width - radius)) {
const uint8_t* i = input + (x - radius);
for (int r = -radius; r <= radius; r++) {
currentPixel = (float)(*i);
blurredPixel += currentPixel * gPtr[0];
gPtr++;
i++;
}
} else {
for (int32_t r = -radius; r <= radius; r++) {
// Stepping left and right away from the pixel
int validW = x + r;
if (validW < 0) {
validW = 0;
}
if (validW > width - 1) {
validW = width - 1;
}
currentPixel = (float)input[validW];
blurredPixel += currentPixel * gPtr[0];
gPtr++;
}
}
*output = (uint8_t)blurredPixel;
output++;
}
}
}
void Blur::vertical(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest,
int32_t width, int32_t height) {
float blurredPixel = 0.0f;
float currentPixel = 0.0f;
for (int32_t y = 0; y < height; y++) {
uint8_t* output = dest + y * width;
for (int32_t x = 0; x < width; x++) {
blurredPixel = 0.0f;
const float* gPtr = weights;
const uint8_t* input = source + x;
// Optimization for non-border pixels
if (y > radius && y < (height - radius)) {
const uint8_t* i = input + ((y - radius) * width);
for (int32_t r = -radius; r <= radius; r++) {
currentPixel = (float)(*i);
blurredPixel += currentPixel * gPtr[0];
gPtr++;
i += width;
}
} else {
for (int32_t r = -radius; r <= radius; r++) {
int validH = y + r;
// Clamp to zero and width
if (validH < 0) {
validH = 0;
}
if (validH > height - 1) {
validH = height - 1;
}
const uint8_t* i = input + validH * width;
currentPixel = (float)(*i);
blurredPixel += currentPixel * gPtr[0];
gPtr++;
}
}
*output = (uint8_t)blurredPixel;
output++;
}
}
}
} // namespace uirenderer
} // namespace android
|