1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.animation;
import android.os.SystemClock;
import android.util.ArrayMap;
import android.view.Choreographer;
import java.util.ArrayList;
/**
* This custom, static handler handles the timing pulse that is shared by all active
* ValueAnimators. This approach ensures that the setting of animation values will happen on the
* same thread that animations start on, and that all animations will share the same times for
* calculating their values, which makes synchronizing animations possible.
*
* The handler uses the Choreographer by default for doing periodic callbacks. A custom
* AnimationFrameCallbackProvider can be set on the handler to provide timing pulse that
* may be independent of UI frame update. This could be useful in testing.
*
* @hide
*/
public class AnimationHandler {
/**
* Internal per-thread collections used to avoid set collisions as animations start and end
* while being processed.
* @hide
*/
private final ArrayMap<AnimationFrameCallback, Long> mDelayedCallbackStartTime =
new ArrayMap<>();
private final ArrayList<AnimationFrameCallback> mAnimationCallbacks =
new ArrayList<>();
private final ArrayList<AnimationFrameCallback> mCommitCallbacks =
new ArrayList<>();
private AnimationFrameCallbackProvider mProvider;
private final Choreographer.FrameCallback mFrameCallback = new Choreographer.FrameCallback() {
@Override
public void doFrame(long frameTimeNanos) {
doAnimationFrame(getProvider().getFrameTime());
if (mAnimationCallbacks.size() > 0) {
getProvider().postFrameCallback(this);
}
}
};
public final static ThreadLocal<AnimationHandler> sAnimatorHandler = new ThreadLocal<>();
private boolean mListDirty = false;
public static AnimationHandler getInstance() {
if (sAnimatorHandler.get() == null) {
sAnimatorHandler.set(new AnimationHandler());
}
return sAnimatorHandler.get();
}
/**
* By default, the Choreographer is used to provide timing for frame callbacks. A custom
* provider can be used here to provide different timing pulse.
*/
public void setProvider(AnimationFrameCallbackProvider provider) {
if (provider == null) {
mProvider = new MyFrameCallbackProvider();
} else {
mProvider = provider;
}
}
private AnimationFrameCallbackProvider getProvider() {
if (mProvider == null) {
mProvider = new MyFrameCallbackProvider();
}
return mProvider;
}
/**
* Register to get a callback on the next frame after the delay.
*/
public void addAnimationFrameCallback(final AnimationFrameCallback callback, long delay) {
if (mAnimationCallbacks.size() == 0) {
getProvider().postFrameCallback(mFrameCallback);
}
if (!mAnimationCallbacks.contains(callback)) {
mAnimationCallbacks.add(callback);
}
if (delay > 0) {
mDelayedCallbackStartTime.put(callback, (SystemClock.uptimeMillis() + delay));
}
}
/**
* Register to get a one shot callback for frame commit timing. Frame commit timing is the
* time *after* traversals are done, as opposed to the animation frame timing, which is
* before any traversals. This timing can be used to adjust the start time of an animation
* when expensive traversals create big delta between the animation frame timing and the time
* that animation is first shown on screen.
*
* Note this should only be called when the animation has already registered to receive
* animation frame callbacks. This callback will be guaranteed to happen *after* the next
* animation frame callback.
*/
public void addOneShotCommitCallback(final AnimationFrameCallback callback) {
if (!mCommitCallbacks.contains(callback)) {
mCommitCallbacks.add(callback);
}
}
/**
* Removes the given callback from the list, so it will no longer be called for frame related
* timing.
*/
public void removeCallback(AnimationFrameCallback callback) {
mCommitCallbacks.remove(callback);
mDelayedCallbackStartTime.remove(callback);
int id = mAnimationCallbacks.indexOf(callback);
if (id >= 0) {
mAnimationCallbacks.set(id, null);
mListDirty = true;
}
}
private void doAnimationFrame(long frameTime) {
long currentTime = SystemClock.uptimeMillis();
final int size = mAnimationCallbacks.size();
for (int i = 0; i < size; i++) {
final AnimationFrameCallback callback = mAnimationCallbacks.get(i);
if (callback == null) {
continue;
}
if (isCallbackDue(callback, currentTime)) {
callback.doAnimationFrame(frameTime);
if (mCommitCallbacks.contains(callback)) {
getProvider().postCommitCallback(new Runnable() {
@Override
public void run() {
commitAnimationFrame(callback, getProvider().getFrameTime());
}
});
}
}
}
cleanUpList();
}
private void commitAnimationFrame(AnimationFrameCallback callback, long frameTime) {
if (!mDelayedCallbackStartTime.containsKey(callback) &&
mCommitCallbacks.contains(callback)) {
callback.commitAnimationFrame(frameTime);
mCommitCallbacks.remove(callback);
}
}
/**
* Remove the callbacks from mDelayedCallbackStartTime once they have passed the initial delay
* so that they can start getting frame callbacks.
*
* @return true if they have passed the initial delay or have no delay, false otherwise.
*/
private boolean isCallbackDue(AnimationFrameCallback callback, long currentTime) {
Long startTime = mDelayedCallbackStartTime.get(callback);
if (startTime == null) {
return true;
}
if (startTime < currentTime) {
mDelayedCallbackStartTime.remove(callback);
return true;
}
return false;
}
/**
* Return the number of callbacks that have registered for frame callbacks.
*/
public static int getAnimationCount() {
AnimationHandler handler = sAnimatorHandler.get();
if (handler == null) {
return 0;
}
return handler.getCallbackSize();
}
public static void setFrameDelay(long delay) {
getInstance().getProvider().setFrameDelay(delay);
}
public static long getFrameDelay() {
return getInstance().getProvider().getFrameDelay();
}
void autoCancelBasedOn(ObjectAnimator objectAnimator) {
for (int i = mAnimationCallbacks.size() - 1; i >= 0; i--) {
AnimationFrameCallback cb = mAnimationCallbacks.get(i);
if (cb == null) {
continue;
}
if (objectAnimator.shouldAutoCancel(cb)) {
((Animator) mAnimationCallbacks.get(i)).cancel();
}
}
}
private void cleanUpList() {
if (mListDirty) {
for (int i = mAnimationCallbacks.size() - 1; i >= 0; i--) {
if (mAnimationCallbacks.get(i) == null) {
mAnimationCallbacks.remove(i);
}
}
mListDirty = false;
}
}
private int getCallbackSize() {
int count = 0;
int size = mAnimationCallbacks.size();
for (int i = size - 1; i >= 0; i--) {
if (mAnimationCallbacks.get(i) != null) {
count++;
}
}
return count;
}
/**
* Default provider of timing pulse that uses Choreographer for frame callbacks.
*/
private class MyFrameCallbackProvider implements AnimationFrameCallbackProvider {
final Choreographer mChoreographer = Choreographer.getInstance();
@Override
public void postFrameCallback(Choreographer.FrameCallback callback) {
mChoreographer.postFrameCallback(callback);
}
@Override
public void postCommitCallback(Runnable runnable) {
mChoreographer.postCallback(Choreographer.CALLBACK_COMMIT, runnable, null);
}
@Override
public long getFrameTime() {
return mChoreographer.getFrameTime();
}
@Override
public long getFrameDelay() {
return Choreographer.getFrameDelay();
}
@Override
public void setFrameDelay(long delay) {
Choreographer.setFrameDelay(delay);
}
}
/**
* Callbacks that receives notifications for animation timing and frame commit timing.
*/
interface AnimationFrameCallback {
/**
* Run animation based on the frame time.
* @param frameTime The frame start time, in the {@link SystemClock#uptimeMillis()} time
* base.
* @return if the animation has finished.
*/
boolean doAnimationFrame(long frameTime);
/**
* This notifies the callback of frame commit time. Frame commit time is the time after
* traversals happen, as opposed to the normal animation frame time that is before
* traversals. This is used to compensate expensive traversals that happen as the
* animation starts. When traversals take a long time to complete, the rendering of the
* initial frame will be delayed (by a long time). But since the startTime of the
* animation is set before the traversal, by the time of next frame, a lot of time would
* have passed since startTime was set, the animation will consequently skip a few frames
* to respect the new frameTime. By having the commit time, we can adjust the start time to
* when the first frame was drawn (after any expensive traversals) so that no frames
* will be skipped.
*
* @param frameTime The frame time after traversals happen, if any, in the
* {@link SystemClock#uptimeMillis()} time base.
*/
void commitAnimationFrame(long frameTime);
}
/**
* The intention for having this interface is to increase the testability of ValueAnimator.
* Specifically, we can have a custom implementation of the interface below and provide
* timing pulse without using Choreographer. That way we could use any arbitrary interval for
* our timing pulse in the tests.
*
* @hide
*/
public interface AnimationFrameCallbackProvider {
void postFrameCallback(Choreographer.FrameCallback callback);
void postCommitCallback(Runnable runnable);
long getFrameTime();
long getFrameDelay();
void setFrameDelay(long delay);
}
}
|