1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
/*
* Copyright (C) 2008-2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.gesture;
import android.graphics.RectF;
import android.util.Log;
import java.util.ArrayList;
import java.util.Arrays;
import java.io.Closeable;
import java.io.IOException;
import static android.gesture.GestureConstants.*;
/**
* Utility functions for gesture processing & analysis, including methods for:
* <ul>
* <li>feature extraction (e.g., samplers and those for calculating bounding
* boxes and gesture path lengths);
* <li>geometric transformation (e.g., translation, rotation and scaling);
* <li>gesture similarity comparison (e.g., calculating Euclidean or Cosine
* distances between two gestures).
* </ul>
*/
public final class GestureUtils {
private static final float SCALING_THRESHOLD = 0.26f;
private static final float NONUNIFORM_SCALE = (float) Math.sqrt(2);
private GestureUtils() {
}
/**
* Closes the specified stream.
*
* @param stream The stream to close.
*/
static void closeStream(Closeable stream) {
if (stream != null) {
try {
stream.close();
} catch (IOException e) {
Log.e(LOG_TAG, "Could not close stream", e);
}
}
}
/**
* Samples the gesture spatially by rendering the gesture into a 2D
* grayscale bitmap. Scales the gesture to fit the size of the bitmap.
* The scaling does not necessarily keep the aspect ratio of the gesture.
*
* @param gesture the gesture to be sampled
* @param bitmapSize the size of the bitmap
* @return a bitmapSize x bitmapSize grayscale bitmap that is represented
* as a 1D array. The float at index i represents the grayscale
* value at pixel [i%bitmapSize, i/bitmapSize]
*/
public static float[] spatialSampling(Gesture gesture, int bitmapSize) {
return spatialSampling(gesture, bitmapSize, false);
}
/**
* Samples the gesture spatially by rendering the gesture into a 2D
* grayscale bitmap. Scales the gesture to fit the size of the bitmap.
*
* @param gesture the gesture to be sampled
* @param bitmapSize the size of the bitmap
* @param keepAspectRatio if the scaling should keep the gesture's
* aspect ratio
*
* @return a bitmapSize x bitmapSize grayscale bitmap that is represented
* as a 1D array. The float at index i represents the grayscale
* value at pixel [i%bitmapSize, i/bitmapSize]
*/
public static float[] spatialSampling(Gesture gesture, int bitmapSize,
boolean keepAspectRatio) {
final float targetPatchSize = bitmapSize - 1;
float[] sample = new float[bitmapSize * bitmapSize];
Arrays.fill(sample, 0);
RectF rect = gesture.getBoundingBox();
final float gestureWidth = rect.width();
final float gestureHeight = rect.height();
float sx = targetPatchSize / gestureWidth;
float sy = targetPatchSize / gestureHeight;
if (keepAspectRatio) {
float scale = sx < sy ? sx : sy;
sx = scale;
sy = scale;
} else {
float aspectRatio = gestureWidth / gestureHeight;
if (aspectRatio > 1) {
aspectRatio = 1 / aspectRatio;
}
if (aspectRatio < SCALING_THRESHOLD) {
float scale = sx < sy ? sx : sy;
sx = scale;
sy = scale;
} else {
if (sx > sy) {
float scale = sy * NONUNIFORM_SCALE;
if (scale < sx) {
sx = scale;
}
} else {
float scale = sx * NONUNIFORM_SCALE;
if (scale < sy) {
sy = scale;
}
}
}
}
float preDx = -rect.centerX();
float preDy = -rect.centerY();
float postDx = targetPatchSize / 2;
float postDy = targetPatchSize / 2;
final ArrayList<GestureStroke> strokes = gesture.getStrokes();
final int count = strokes.size();
int size;
float xpos;
float ypos;
for (int index = 0; index < count; index++) {
final GestureStroke stroke = strokes.get(index);
float[] strokepoints = stroke.points;
size = strokepoints.length;
final float[] pts = new float[size];
for (int i = 0; i < size; i += 2) {
pts[i] = (strokepoints[i] + preDx) * sx + postDx;
pts[i + 1] = (strokepoints[i + 1] + preDy) * sy + postDy;
}
float segmentEndX = -1;
float segmentEndY = -1;
for (int i = 0; i < size; i += 2) {
float segmentStartX = pts[i] < 0 ? 0 : pts[i];
float segmentStartY = pts[i + 1] < 0 ? 0 : pts[i + 1];
if (segmentStartX > targetPatchSize) {
segmentStartX = targetPatchSize;
}
if (segmentStartY > targetPatchSize) {
segmentStartY = targetPatchSize;
}
plot(segmentStartX, segmentStartY, sample, bitmapSize);
if (segmentEndX != -1) {
// Evaluate horizontally
if (segmentEndX > segmentStartX) {
xpos = (float) Math.ceil(segmentStartX);
float slope = (segmentEndY - segmentStartY) /
(segmentEndX - segmentStartX);
while (xpos < segmentEndX) {
ypos = slope * (xpos - segmentStartX) + segmentStartY;
plot(xpos, ypos, sample, bitmapSize);
xpos++;
}
} else if (segmentEndX < segmentStartX){
xpos = (float) Math.ceil(segmentEndX);
float slope = (segmentEndY - segmentStartY) /
(segmentEndX - segmentStartX);
while (xpos < segmentStartX) {
ypos = slope * (xpos - segmentStartX) + segmentStartY;
plot(xpos, ypos, sample, bitmapSize);
xpos++;
}
}
// Evaluate vertically
if (segmentEndY > segmentStartY) {
ypos = (float) Math.ceil(segmentStartY);
float invertSlope = (segmentEndX - segmentStartX) /
(segmentEndY - segmentStartY);
while (ypos < segmentEndY) {
xpos = invertSlope * (ypos - segmentStartY) + segmentStartX;
plot(xpos, ypos, sample, bitmapSize);
ypos++;
}
} else if (segmentEndY < segmentStartY) {
ypos = (float) Math.ceil(segmentEndY);
float invertSlope = (segmentEndX - segmentStartX) /
(segmentEndY - segmentStartY);
while (ypos < segmentStartY) {
xpos = invertSlope * (ypos - segmentStartY) + segmentStartX;
plot(xpos, ypos, sample, bitmapSize);
ypos++;
}
}
}
segmentEndX = segmentStartX;
segmentEndY = segmentStartY;
}
}
return sample;
}
private static void plot(float x, float y, float[] sample, int sampleSize) {
x = x < 0 ? 0 : x;
y = y < 0 ? 0 : y;
int xFloor = (int) Math.floor(x);
int xCeiling = (int) Math.ceil(x);
int yFloor = (int) Math.floor(y);
int yCeiling = (int) Math.ceil(y);
// if it's an integer
if (x == xFloor && y == yFloor) {
int index = yCeiling * sampleSize + xCeiling;
if (sample[index] < 1){
sample[index] = 1;
}
} else {
final double xFloorSq = Math.pow(xFloor - x, 2);
final double yFloorSq = Math.pow(yFloor - y, 2);
final double xCeilingSq = Math.pow(xCeiling - x, 2);
final double yCeilingSq = Math.pow(yCeiling - y, 2);
float topLeft = (float) Math.sqrt(xFloorSq + yFloorSq);
float topRight = (float) Math.sqrt(xCeilingSq + yFloorSq);
float btmLeft = (float) Math.sqrt(xFloorSq + yCeilingSq);
float btmRight = (float) Math.sqrt(xCeilingSq + yCeilingSq);
float sum = topLeft + topRight + btmLeft + btmRight;
float value = topLeft / sum;
int index = yFloor * sampleSize + xFloor;
if (value > sample[index]){
sample[index] = value;
}
value = topRight / sum;
index = yFloor * sampleSize + xCeiling;
if (value > sample[index]){
sample[index] = value;
}
value = btmLeft / sum;
index = yCeiling * sampleSize + xFloor;
if (value > sample[index]){
sample[index] = value;
}
value = btmRight / sum;
index = yCeiling * sampleSize + xCeiling;
if (value > sample[index]){
sample[index] = value;
}
}
}
/**
* Samples a stroke temporally into a given number of evenly-distributed
* points.
*
* @param stroke the gesture stroke to be sampled
* @param numPoints the number of points
* @return the sampled points in the form of [x1, y1, x2, y2, ..., xn, yn]
*/
public static float[] temporalSampling(GestureStroke stroke, int numPoints) {
final float increment = stroke.length / (numPoints - 1);
int vectorLength = numPoints * 2;
float[] vector = new float[vectorLength];
float distanceSoFar = 0;
float[] pts = stroke.points;
float lstPointX = pts[0];
float lstPointY = pts[1];
int index = 0;
float currentPointX = Float.MIN_VALUE;
float currentPointY = Float.MIN_VALUE;
vector[index] = lstPointX;
index++;
vector[index] = lstPointY;
index++;
int i = 0;
int count = pts.length / 2;
while (i < count) {
if (currentPointX == Float.MIN_VALUE) {
i++;
if (i >= count) {
break;
}
currentPointX = pts[i * 2];
currentPointY = pts[i * 2 + 1];
}
float deltaX = currentPointX - lstPointX;
float deltaY = currentPointY - lstPointY;
float distance = (float) Math.hypot(deltaX, deltaY);
if (distanceSoFar + distance >= increment) {
float ratio = (increment - distanceSoFar) / distance;
float nx = lstPointX + ratio * deltaX;
float ny = lstPointY + ratio * deltaY;
vector[index] = nx;
index++;
vector[index] = ny;
index++;
lstPointX = nx;
lstPointY = ny;
distanceSoFar = 0;
} else {
lstPointX = currentPointX;
lstPointY = currentPointY;
currentPointX = Float.MIN_VALUE;
currentPointY = Float.MIN_VALUE;
distanceSoFar += distance;
}
}
for (i = index; i < vectorLength; i += 2) {
vector[i] = lstPointX;
vector[i + 1] = lstPointY;
}
return vector;
}
/**
* Calculates the centroid of a set of points.
*
* @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
* @return the centroid
*/
static float[] computeCentroid(float[] points) {
float centerX = 0;
float centerY = 0;
int count = points.length;
for (int i = 0; i < count; i++) {
centerX += points[i];
i++;
centerY += points[i];
}
float[] center = new float[2];
center[0] = 2 * centerX / count;
center[1] = 2 * centerY / count;
return center;
}
/**
* Calculates the variance-covariance matrix of a set of points.
*
* @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
* @return the variance-covariance matrix
*/
private static float[][] computeCoVariance(float[] points) {
float[][] array = new float[2][2];
array[0][0] = 0;
array[0][1] = 0;
array[1][0] = 0;
array[1][1] = 0;
int count = points.length;
for (int i = 0; i < count; i++) {
float x = points[i];
i++;
float y = points[i];
array[0][0] += x * x;
array[0][1] += x * y;
array[1][0] = array[0][1];
array[1][1] += y * y;
}
array[0][0] /= (count / 2);
array[0][1] /= (count / 2);
array[1][0] /= (count / 2);
array[1][1] /= (count / 2);
return array;
}
static float computeTotalLength(float[] points) {
float sum = 0;
int count = points.length - 4;
for (int i = 0; i < count; i += 2) {
float dx = points[i + 2] - points[i];
float dy = points[i + 3] - points[i + 1];
sum += Math.hypot(dx, dy);
}
return sum;
}
static float computeStraightness(float[] points) {
float totalLen = computeTotalLength(points);
float dx = points[2] - points[0];
float dy = points[3] - points[1];
return (float) Math.hypot(dx, dy) / totalLen;
}
static float computeStraightness(float[] points, float totalLen) {
float dx = points[2] - points[0];
float dy = points[3] - points[1];
return (float) Math.hypot(dx, dy) / totalLen;
}
/**
* Calculates the squared Euclidean distance between two vectors.
*
* @param vector1
* @param vector2
* @return the distance
*/
static float squaredEuclideanDistance(float[] vector1, float[] vector2) {
float squaredDistance = 0;
int size = vector1.length;
for (int i = 0; i < size; i++) {
float difference = vector1[i] - vector2[i];
squaredDistance += difference * difference;
}
return squaredDistance / size;
}
/**
* Calculates the cosine distance between two instances.
*
* @param vector1
* @param vector2
* @return the distance between 0 and Math.PI
*/
static float cosineDistance(float[] vector1, float[] vector2) {
float sum = 0;
int len = vector1.length;
for (int i = 0; i < len; i++) {
sum += vector1[i] * vector2[i];
}
return (float) Math.acos(sum);
}
/**
* Calculates the "minimum" cosine distance between two instances.
*
* @param vector1
* @param vector2
* @param numOrientations the maximum number of orientation allowed
* @return the distance between the two instances (between 0 and Math.PI)
*/
static float minimumCosineDistance(float[] vector1, float[] vector2, int numOrientations) {
final int len = vector1.length;
float a = 0;
float b = 0;
for (int i = 0; i < len; i += 2) {
a += vector1[i] * vector2[i] + vector1[i + 1] * vector2[i + 1];
b += vector1[i] * vector2[i + 1] - vector1[i + 1] * vector2[i];
}
if (a != 0) {
final float tan = b/a;
final double angle = Math.atan(tan);
if (numOrientations > 2 && Math.abs(angle) >= Math.PI / numOrientations) {
return (float) Math.acos(a);
} else {
final double cosine = Math.cos(angle);
final double sine = cosine * tan;
return (float) Math.acos(a * cosine + b * sine);
}
} else {
return (float) Math.PI / 2;
}
}
/**
* Computes an oriented, minimum bounding box of a set of points.
*
* @param originalPoints
* @return an oriented bounding box
*/
public static OrientedBoundingBox computeOrientedBoundingBox(ArrayList<GesturePoint> originalPoints) {
final int count = originalPoints.size();
float[] points = new float[count * 2];
for (int i = 0; i < count; i++) {
GesturePoint point = originalPoints.get(i);
int index = i * 2;
points[index] = point.x;
points[index + 1] = point.y;
}
float[] meanVector = computeCentroid(points);
return computeOrientedBoundingBox(points, meanVector);
}
/**
* Computes an oriented, minimum bounding box of a set of points.
*
* @param originalPoints
* @return an oriented bounding box
*/
public static OrientedBoundingBox computeOrientedBoundingBox(float[] originalPoints) {
int size = originalPoints.length;
float[] points = new float[size];
for (int i = 0; i < size; i++) {
points[i] = originalPoints[i];
}
float[] meanVector = computeCentroid(points);
return computeOrientedBoundingBox(points, meanVector);
}
private static OrientedBoundingBox computeOrientedBoundingBox(float[] points, float[] centroid) {
translate(points, -centroid[0], -centroid[1]);
float[][] array = computeCoVariance(points);
float[] targetVector = computeOrientation(array);
float angle;
if (targetVector[0] == 0 && targetVector[1] == 0) {
angle = (float) -Math.PI/2;
} else { // -PI<alpha<PI
angle = (float) Math.atan2(targetVector[1], targetVector[0]);
rotate(points, -angle);
}
float minx = Float.MAX_VALUE;
float miny = Float.MAX_VALUE;
float maxx = Float.MIN_VALUE;
float maxy = Float.MIN_VALUE;
int count = points.length;
for (int i = 0; i < count; i++) {
if (points[i] < minx) {
minx = points[i];
}
if (points[i] > maxx) {
maxx = points[i];
}
i++;
if (points[i] < miny) {
miny = points[i];
}
if (points[i] > maxy) {
maxy = points[i];
}
}
return new OrientedBoundingBox((float) (angle * 180 / Math.PI), centroid[0], centroid[1], maxx - minx, maxy - miny);
}
private static float[] computeOrientation(float[][] covarianceMatrix) {
float[] targetVector = new float[2];
if (covarianceMatrix[0][1] == 0 || covarianceMatrix[1][0] == 0) {
targetVector[0] = 1;
targetVector[1] = 0;
}
float a = -covarianceMatrix[0][0] - covarianceMatrix[1][1];
float b = covarianceMatrix[0][0] * covarianceMatrix[1][1] - covarianceMatrix[0][1]
* covarianceMatrix[1][0];
float value = a / 2;
float rightside = (float) Math.sqrt(Math.pow(value, 2) - b);
float lambda1 = -value + rightside;
float lambda2 = -value - rightside;
if (lambda1 == lambda2) {
targetVector[0] = 0;
targetVector[1] = 0;
} else {
float lambda = lambda1 > lambda2 ? lambda1 : lambda2;
targetVector[0] = 1;
targetVector[1] = (lambda - covarianceMatrix[0][0]) / covarianceMatrix[0][1];
}
return targetVector;
}
static float[] rotate(float[] points, float angle) {
float cos = (float) Math.cos(angle);
float sin = (float) Math.sin(angle);
int size = points.length;
for (int i = 0; i < size; i += 2) {
float x = points[i] * cos - points[i + 1] * sin;
float y = points[i] * sin + points[i + 1] * cos;
points[i] = x;
points[i + 1] = y;
}
return points;
}
static float[] translate(float[] points, float dx, float dy) {
int size = points.length;
for (int i = 0; i < size; i += 2) {
points[i] += dx;
points[i + 1] += dy;
}
return points;
}
static float[] scale(float[] points, float sx, float sy) {
int size = points.length;
for (int i = 0; i < size; i += 2) {
points[i] *= sx;
points[i + 1] *= sy;
}
return points;
}
}
|