1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import java.util.GregorianCalendar;
/**
* Estimates magnetic field at a given point on
* Earth, and in particular, to compute the magnetic declination from true
* north.
*
* <p>This uses the World Magnetic Model produced by the United States National
* Geospatial-Intelligence Agency. More details about the model can be found at
* <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>.
* This class currently uses WMM-2015 which is valid until 2020, but should
* produce acceptable results for several years after that. Future versions of
* Android may use a newer version of the model.
*/
public class GeomagneticField {
// The magnetic field at a given point, in nanoteslas in geodetic
// coordinates.
private float mX;
private float mY;
private float mZ;
// Geocentric coordinates -- set by computeGeocentricCoordinates.
private float mGcLatitudeRad;
private float mGcLongitudeRad;
private float mGcRadiusKm;
// Constants from WGS84 (the coordinate system used by GPS)
static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f;
static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f;
static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f;
// These coefficients and the formulae used below are from:
// NOAA Technical Report: The US/UK World Magnetic Model for 2015-2020
static private final float[][] G_COEFF = new float[][] {
{ 0.0f },
{ -29438.5f, -1501.1f },
{ -2445.3f, 3012.5f, 1676.6f },
{ 1351.1f, -2352.3f, 1225.6f, 581.9f },
{ 907.2f, 813.7f, 120.3f, -335.0f, 70.3f },
{ -232.6f, 360.1f, 192.4f, -141.0f, -157.4f, 4.3f },
{ 69.5f, 67.4f, 72.8f, -129.8f, -29.0f, 13.2f, -70.9f },
{ 81.6f, -76.1f, -6.8f, 51.9f, 15.0f, 9.3f, -2.8f, 6.7f },
{ 24.0f, 8.6f, -16.9f, -3.2f, -20.6f, 13.3f, 11.7f, -16.0f, -2.0f },
{ 5.4f, 8.8f, 3.1f, -3.1f, 0.6f, -13.3f, -0.1f, 8.7f, -9.1f, -10.5f },
{ -1.9f, -6.5f, 0.2f, 0.6f, -0.6f, 1.7f, -0.7f, 2.1f, 2.3f, -1.8f, -3.6f },
{ 3.1f, -1.5f, -2.3f, 2.1f, -0.9f, 0.6f, -0.7f, 0.2f, 1.7f, -0.2f, 0.4f, 3.5f },
{ -2.0f, -0.3f, 0.4f, 1.3f, -0.9f, 0.9f, 0.1f, 0.5f, -0.4f, -0.4f, 0.2f, -0.9f, 0.0f } };
static private final float[][] H_COEFF = new float[][] {
{ 0.0f },
{ 0.0f, 4796.2f },
{ 0.0f, -2845.6f, -642.0f },
{ 0.0f, -115.3f, 245.0f, -538.3f },
{ 0.0f, 283.4f, -188.6f, 180.9f, -329.5f },
{ 0.0f, 47.4f, 196.9f, -119.4f, 16.1f, 100.1f },
{ 0.0f, -20.7f, 33.2f, 58.8f, -66.5f, 7.3f, 62.5f },
{ 0.0f, -54.1f, -19.4f, 5.6f, 24.4f, 3.3f, -27.5f, -2.3f },
{ 0.0f, 10.2f, -18.1f, 13.2f, -14.6f, 16.2f, 5.7f, -9.1f, 2.2f },
{ 0.0f, -21.6f, 10.8f, 11.7f, -6.8f, -6.9f, 7.8f, 1.0f, -3.9f, 8.5f },
{ 0.0f, 3.3f, -0.3f, 4.6f, 4.4f, -7.9f, -0.6f, -4.1f, -2.8f, -1.1f, -8.7f },
{ 0.0f, -0.1f, 2.1f, -0.7f, -1.1f, 0.7f, -0.2f, -2.1f, -1.5f, -2.5f, -2.0f, -2.3f },
{ 0.0f, -1.0f, 0.5f, 1.8f, -2.2f, 0.3f, 0.7f, -0.1f, 0.3f, 0.2f, -0.9f, -0.2f, 0.7f } };
static private final float[][] DELTA_G = new float[][] {
{ 0.0f },
{ 10.7f, 17.9f },
{ -8.6f, -3.3f, 2.4f },
{ 3.1f, -6.2f, -0.4f, -10.4f },
{ -0.4f, 0.8f, -9.2f, 4.0f, -4.2f },
{ -0.2f, 0.1f, -1.4f, 0.0f, 1.3f, 3.8f },
{ -0.5f, -0.2f, -0.6f, 2.4f, -1.1f, 0.3f, 1.5f },
{ 0.2f, -0.2f, -0.4f, 1.3f, 0.2f, -0.4f, -0.9f, 0.3f },
{ 0.0f, 0.1f, -0.5f, 0.5f, -0.2f, 0.4f, 0.2f, -0.4f, 0.3f },
{ 0.0f, -0.1f, -0.1f, 0.4f, -0.5f, -0.2f, 0.1f, 0.0f, -0.2f, -0.1f },
{ 0.0f, 0.0f, -0.1f, 0.3f, -0.1f, -0.1f, -0.1f, 0.0f, -0.2f, -0.1f, -0.2f },
{ 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f, -0.1f },
{ 0.1f, 0.0f, 0.0f, 0.1f, -0.1f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
static private final float[][] DELTA_H = new float[][] {
{ 0.0f },
{ 0.0f, -26.8f },
{ 0.0f, -27.1f, -13.3f },
{ 0.0f, 8.4f, -0.4f, 2.3f },
{ 0.0f, -0.6f, 5.3f, 3.0f, -5.3f },
{ 0.0f, 0.4f, 1.6f, -1.1f, 3.3f, 0.1f },
{ 0.0f, 0.0f, -2.2f, -0.7f, 0.1f, 1.0f, 1.3f },
{ 0.0f, 0.7f, 0.5f, -0.2f, -0.1f, -0.7f, 0.1f, 0.1f },
{ 0.0f, -0.3f, 0.3f, 0.3f, 0.6f, -0.1f, -0.2f, 0.3f, 0.0f },
{ 0.0f, -0.2f, -0.1f, -0.2f, 0.1f, 0.1f, 0.0f, -0.2f, 0.4f, 0.3f },
{ 0.0f, 0.1f, -0.1f, 0.0f, 0.0f, -0.2f, 0.1f, -0.1f, -0.2f, 0.1f, -0.1f },
{ 0.0f, 0.0f, 0.1f, 0.0f, 0.1f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, -0.1f },
{ 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
static private final long BASE_TIME =
new GregorianCalendar(2015, 1, 1).getTimeInMillis();
// The ratio between the Gauss-normalized associated Legendre functions and
// the Schmid quasi-normalized ones. Compute these once staticly since they
// don't depend on input variables at all.
static private final float[][] SCHMIDT_QUASI_NORM_FACTORS =
computeSchmidtQuasiNormFactors(G_COEFF.length);
/**
* Estimate the magnetic field at a given point and time.
*
* @param gdLatitudeDeg
* Latitude in WGS84 geodetic coordinates -- positive is east.
* @param gdLongitudeDeg
* Longitude in WGS84 geodetic coordinates -- positive is north.
* @param altitudeMeters
* Altitude in WGS84 geodetic coordinates, in meters.
* @param timeMillis
* Time at which to evaluate the declination, in milliseconds
* since January 1, 1970. (approximate is fine -- the declination
* changes very slowly).
*/
public GeomagneticField(float gdLatitudeDeg,
float gdLongitudeDeg,
float altitudeMeters,
long timeMillis) {
final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients.
// We don't handle the north and south poles correctly -- pretend that
// we're not quite at them to avoid crashing.
gdLatitudeDeg = Math.min(90.0f - 1e-5f,
Math.max(-90.0f + 1e-5f, gdLatitudeDeg));
computeGeocentricCoordinates(gdLatitudeDeg,
gdLongitudeDeg,
altitudeMeters);
assert G_COEFF.length == H_COEFF.length;
// Note: LegendreTable computes associated Legendre functions for
// cos(theta). We want the associated Legendre functions for
// sin(latitude), which is the same as cos(PI/2 - latitude), except the
// derivate will be negated.
LegendreTable legendre =
new LegendreTable(MAX_N - 1,
(float) (Math.PI / 2.0 - mGcLatitudeRad));
// Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in
// 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times).
float[] relativeRadiusPower = new float[MAX_N + 2];
relativeRadiusPower[0] = 1.0f;
relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm;
for (int i = 2; i < relativeRadiusPower.length; ++i) {
relativeRadiusPower[i] = relativeRadiusPower[i - 1] *
relativeRadiusPower[1];
}
// Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N --
// this is much faster than calling Math.sin and Math.com MAX_N+1 times.
float[] sinMLon = new float[MAX_N];
float[] cosMLon = new float[MAX_N];
sinMLon[0] = 0.0f;
cosMLon[0] = 1.0f;
sinMLon[1] = (float) Math.sin(mGcLongitudeRad);
cosMLon[1] = (float) Math.cos(mGcLongitudeRad);
for (int m = 2; m < MAX_N; ++m) {
// Standard expansions for sin((m-x)*theta + x*theta) and
// cos((m-x)*theta + x*theta).
int x = m >> 1;
sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x];
cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x];
}
float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad);
float yearsSinceBase =
(timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f);
// We now compute the magnetic field strength given the geocentric
// location. The magnetic field is the derivative of the potential
// function defined by the model. See NOAA Technical Report: The US/UK
// World Magnetic Model for 2015-2020 for the derivation.
float gcX = 0.0f; // Geocentric northwards component.
float gcY = 0.0f; // Geocentric eastwards component.
float gcZ = 0.0f; // Geocentric downwards component.
for (int n = 1; n < MAX_N; n++) {
for (int m = 0; m <= n; m++) {
// Adjust the coefficients for the current date.
float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m];
float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m];
// Negative derivative with respect to latitude, divided by
// radius. This looks like the negation of the version in the
// NOAA Techincal report because that report used
// P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the
// derivative with respect to theta is negated.
gcX += relativeRadiusPower[n+2]
* (g * cosMLon[m] + h * sinMLon[m])
* legendre.mPDeriv[n][m]
* SCHMIDT_QUASI_NORM_FACTORS[n][m];
// Negative derivative with respect to longitude, divided by
// radius.
gcY += relativeRadiusPower[n+2] * m
* (g * sinMLon[m] - h * cosMLon[m])
* legendre.mP[n][m]
* SCHMIDT_QUASI_NORM_FACTORS[n][m]
* inverseCosLatitude;
// Negative derivative with respect to radius.
gcZ -= (n + 1) * relativeRadiusPower[n+2]
* (g * cosMLon[m] + h * sinMLon[m])
* legendre.mP[n][m]
* SCHMIDT_QUASI_NORM_FACTORS[n][m];
}
}
// Convert back to geodetic coordinates. This is basically just a
// rotation around the Y-axis by the difference in latitudes between the
// geocentric frame and the geodetic frame.
double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad;
mX = (float) (gcX * Math.cos(latDiffRad)
+ gcZ * Math.sin(latDiffRad));
mY = gcY;
mZ = (float) (- gcX * Math.sin(latDiffRad)
+ gcZ * Math.cos(latDiffRad));
}
/**
* @return The X (northward) component of the magnetic field in nanoteslas.
*/
public float getX() {
return mX;
}
/**
* @return The Y (eastward) component of the magnetic field in nanoteslas.
*/
public float getY() {
return mY;
}
/**
* @return The Z (downward) component of the magnetic field in nanoteslas.
*/
public float getZ() {
return mZ;
}
/**
* @return The declination of the horizontal component of the magnetic
* field from true north, in degrees (i.e. positive means the
* magnetic field is rotated east that much from true north).
*/
public float getDeclination() {
return (float) Math.toDegrees(Math.atan2(mY, mX));
}
/**
* @return The inclination of the magnetic field in degrees -- positive
* means the magnetic field is rotated downwards.
*/
public float getInclination() {
return (float) Math.toDegrees(Math.atan2(mZ,
getHorizontalStrength()));
}
/**
* @return Horizontal component of the field strength in nanoteslas.
*/
public float getHorizontalStrength() {
return (float) Math.hypot(mX, mY);
}
/**
* @return Total field strength in nanoteslas.
*/
public float getFieldStrength() {
return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ);
}
/**
* @param gdLatitudeDeg
* Latitude in WGS84 geodetic coordinates.
* @param gdLongitudeDeg
* Longitude in WGS84 geodetic coordinates.
* @param altitudeMeters
* Altitude above sea level in WGS84 geodetic coordinates.
* @return Geocentric latitude (i.e. angle between closest point on the
* equator and this point, at the center of the earth.
*/
private void computeGeocentricCoordinates(float gdLatitudeDeg,
float gdLongitudeDeg,
float altitudeMeters) {
float altitudeKm = altitudeMeters / 1000.0f;
float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM;
float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM;
double gdLatRad = Math.toRadians(gdLatitudeDeg);
float clat = (float) Math.cos(gdLatRad);
float slat = (float) Math.sin(gdLatRad);
float tlat = slat / clat;
float latRad =
(float) Math.sqrt(a2 * clat * clat + b2 * slat * slat);
mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2)
/ (latRad * altitudeKm + a2));
mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg);
float radSq = altitudeKm * altitudeKm
+ 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat +
b2 * slat * slat)
+ (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
/ (a2 * clat * clat + b2 * slat * slat);
mGcRadiusKm = (float) Math.sqrt(radSq);
}
/**
* Utility class to compute a table of Gauss-normalized associated Legendre
* functions P_n^m(cos(theta))
*/
static private class LegendreTable {
// These are the Gauss-normalized associated Legendre functions -- that
// is, they are normal Legendre functions multiplied by
// (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1)
public final float[][] mP;
// Derivative of mP, with respect to theta.
public final float[][] mPDeriv;
/**
* @param maxN
* The maximum n- and m-values to support
* @param thetaRad
* Returned functions will be Gauss-normalized
* P_n^m(cos(thetaRad)), with thetaRad in radians.
*/
public LegendreTable(int maxN, float thetaRad) {
// Compute the table of Gauss-normalized associated Legendre
// functions using standard recursion relations. Also compute the
// table of derivatives using the derivative of the recursion
// relations.
float cos = (float) Math.cos(thetaRad);
float sin = (float) Math.sin(thetaRad);
mP = new float[maxN + 1][];
mPDeriv = new float[maxN + 1][];
mP[0] = new float[] { 1.0f };
mPDeriv[0] = new float[] { 0.0f };
for (int n = 1; n <= maxN; n++) {
mP[n] = new float[n + 1];
mPDeriv[n] = new float[n + 1];
for (int m = 0; m <= n; m++) {
if (n == m) {
mP[n][m] = sin * mP[n - 1][m - 1];
mPDeriv[n][m] = cos * mP[n - 1][m - 1]
+ sin * mPDeriv[n - 1][m - 1];
} else if (n == 1 || m == n - 1) {
mP[n][m] = cos * mP[n - 1][m];
mPDeriv[n][m] = -sin * mP[n - 1][m]
+ cos * mPDeriv[n - 1][m];
} else {
assert n > 1 && m < n - 1;
float k = ((n - 1) * (n - 1) - m * m)
/ (float) ((2 * n - 1) * (2 * n - 3));
mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m];
mPDeriv[n][m] = -sin * mP[n - 1][m]
+ cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m];
}
}
}
}
}
/**
* Compute the ration between the Gauss-normalized associated Legendre
* functions and the Schmidt quasi-normalized version. This is equivalent to
* sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)!
*/
private static float[][] computeSchmidtQuasiNormFactors(int maxN) {
float[][] schmidtQuasiNorm = new float[maxN + 1][];
schmidtQuasiNorm[0] = new float[] { 1.0f };
for (int n = 1; n <= maxN; n++) {
schmidtQuasiNorm[n] = new float[n + 1];
schmidtQuasiNorm[n][0] =
schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n;
for (int m = 1; m <= n; m++) {
schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1]
* (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1)
/ (float) (n + m));
}
}
return schmidtQuasiNorm;
}
}
|