1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import static android.view.Display.DEFAULT_DISPLAY;
import android.os.RemoteException;
import android.os.ServiceManager;
import android.view.IRotationWatcher;
import android.view.IWindowManager;
import android.view.Surface;
import java.util.HashMap;
import java.util.List;
/**
* Helper class for implementing the legacy sensor manager API.
* @hide
*/
@SuppressWarnings("deprecation")
final class LegacySensorManager {
private static boolean sInitialized;
private static IWindowManager sWindowManager;
private static int sRotation = Surface.ROTATION_0;
private final SensorManager mSensorManager;
// List of legacy listeners. Guarded by mLegacyListenersMap.
private final HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
new HashMap<SensorListener, LegacyListener>();
public LegacySensorManager(SensorManager sensorManager) {
mSensorManager = sensorManager;
synchronized (SensorManager.class) {
if (!sInitialized) {
sWindowManager = IWindowManager.Stub.asInterface(
ServiceManager.getService("window"));
if (sWindowManager != null) {
// if it's null we're running in the system process
// which won't get the rotated values
try {
sRotation = sWindowManager.watchRotation(
new IRotationWatcher.Stub() {
public void onRotationChanged(int rotation) {
LegacySensorManager.onRotationChanged(rotation);
}
}, DEFAULT_DISPLAY);
} catch (RemoteException e) {
}
}
}
}
}
public int getSensors() {
int result = 0;
final List<Sensor> fullList = mSensorManager.getFullSensorList();
for (Sensor i : fullList) {
switch (i.getType()) {
case Sensor.TYPE_ACCELEROMETER:
result |= SensorManager.SENSOR_ACCELEROMETER;
break;
case Sensor.TYPE_MAGNETIC_FIELD:
result |= SensorManager.SENSOR_MAGNETIC_FIELD;
break;
case Sensor.TYPE_ORIENTATION:
result |= SensorManager.SENSOR_ORIENTATION
| SensorManager.SENSOR_ORIENTATION_RAW;
break;
}
}
return result;
}
public boolean registerListener(SensorListener listener, int sensors, int rate) {
if (listener == null) {
return false;
}
boolean result = false;
result = registerLegacyListener(SensorManager.SENSOR_ACCELEROMETER,
Sensor.TYPE_ACCELEROMETER, listener, sensors, rate) || result;
result = registerLegacyListener(SensorManager.SENSOR_MAGNETIC_FIELD,
Sensor.TYPE_MAGNETIC_FIELD, listener, sensors, rate) || result;
result = registerLegacyListener(SensorManager.SENSOR_ORIENTATION_RAW,
Sensor.TYPE_ORIENTATION, listener, sensors, rate) || result;
result = registerLegacyListener(SensorManager.SENSOR_ORIENTATION,
Sensor.TYPE_ORIENTATION, listener, sensors, rate) || result;
result = registerLegacyListener(SensorManager.SENSOR_TEMPERATURE,
Sensor.TYPE_TEMPERATURE, listener, sensors, rate) || result;
return result;
}
private boolean registerLegacyListener(int legacyType, int type,
SensorListener listener, int sensors, int rate) {
boolean result = false;
// Are we activating this legacy sensor?
if ((sensors & legacyType) != 0) {
// if so, find a suitable Sensor
Sensor sensor = mSensorManager.getDefaultSensor(type);
if (sensor != null) {
// We do all of this work holding the legacy listener lock to ensure
// that the invariants around listeners are maintained. This is safe
// because neither registerLegacyListener nor unregisterLegacyListener
// are called reentrantly while sensors are being registered or unregistered.
synchronized (mLegacyListenersMap) {
// If we don't already have one, create a LegacyListener
// to wrap this listener and process the events as
// they are expected by legacy apps.
LegacyListener legacyListener = mLegacyListenersMap.get(listener);
if (legacyListener == null) {
// we didn't find a LegacyListener for this client,
// create one, and put it in our list.
legacyListener = new LegacyListener(listener);
mLegacyListenersMap.put(listener, legacyListener);
}
// register this legacy sensor with this legacy listener
if (legacyListener.registerSensor(legacyType)) {
// and finally, register the legacy listener with the new apis
result = mSensorManager.registerListener(legacyListener, sensor, rate);
} else {
result = true; // sensor already enabled
}
}
}
}
return result;
}
public void unregisterListener(SensorListener listener, int sensors) {
if (listener == null) {
return;
}
unregisterLegacyListener(SensorManager.SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
listener, sensors);
unregisterLegacyListener(SensorManager.SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
listener, sensors);
unregisterLegacyListener(SensorManager.SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
listener, sensors);
unregisterLegacyListener(SensorManager.SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
listener, sensors);
unregisterLegacyListener(SensorManager.SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
listener, sensors);
}
private void unregisterLegacyListener(int legacyType, int type,
SensorListener listener, int sensors) {
// Are we deactivating this legacy sensor?
if ((sensors & legacyType) != 0) {
// if so, find the corresponding Sensor
Sensor sensor = mSensorManager.getDefaultSensor(type);
if (sensor != null) {
// We do all of this work holding the legacy listener lock to ensure
// that the invariants around listeners are maintained. This is safe
// because neither registerLegacyListener nor unregisterLegacyListener
// are called re-entrantly while sensors are being registered or unregistered.
synchronized (mLegacyListenersMap) {
// do we know about this listener?
LegacyListener legacyListener = mLegacyListenersMap.get(listener);
if (legacyListener != null) {
// unregister this legacy sensor and if we don't
// need the corresponding Sensor, unregister it too
if (legacyListener.unregisterSensor(legacyType)) {
// corresponding sensor not needed, unregister
mSensorManager.unregisterListener(legacyListener, sensor);
// finally check if we still need the legacyListener
// in our mapping, if not, get rid of it too.
if (!legacyListener.hasSensors()) {
mLegacyListenersMap.remove(listener);
}
}
}
}
}
}
}
static void onRotationChanged(int rotation) {
synchronized (SensorManager.class) {
sRotation = rotation;
}
}
static int getRotation() {
synchronized (SensorManager.class) {
return sRotation;
}
}
private static final class LegacyListener implements SensorEventListener {
private float[] mValues = new float[6];
private SensorListener mTarget;
private int mSensors;
private final LmsFilter mYawfilter = new LmsFilter();
LegacyListener(SensorListener target) {
mTarget = target;
mSensors = 0;
}
boolean registerSensor(int legacyType) {
if ((mSensors & legacyType) != 0) {
return false;
}
boolean alreadyHasOrientationSensor = hasOrientationSensor(mSensors);
mSensors |= legacyType;
if (alreadyHasOrientationSensor && hasOrientationSensor(legacyType)) {
return false; // don't need to re-register the orientation sensor
}
return true;
}
boolean unregisterSensor(int legacyType) {
if ((mSensors & legacyType) == 0) {
return false;
}
mSensors &= ~legacyType;
if (hasOrientationSensor(legacyType) && hasOrientationSensor(mSensors)) {
return false; // can't unregister the orientation sensor just yet
}
return true;
}
boolean hasSensors() {
return mSensors != 0;
}
private static boolean hasOrientationSensor(int sensors) {
return (sensors & (SensorManager.SENSOR_ORIENTATION
| SensorManager.SENSOR_ORIENTATION_RAW)) != 0;
}
public void onAccuracyChanged(Sensor sensor, int accuracy) {
try {
mTarget.onAccuracyChanged(getLegacySensorType(sensor.getType()), accuracy);
} catch (AbstractMethodError e) {
// old app that doesn't implement this method
// just ignore it.
}
}
public void onSensorChanged(SensorEvent event) {
final float[] v = mValues;
v[0] = event.values[0];
v[1] = event.values[1];
v[2] = event.values[2];
int type = event.sensor.getType();
int legacyType = getLegacySensorType(type);
mapSensorDataToWindow(legacyType, v, LegacySensorManager.getRotation());
if (type == Sensor.TYPE_ORIENTATION) {
if ((mSensors & SensorManager.SENSOR_ORIENTATION_RAW) != 0) {
mTarget.onSensorChanged(SensorManager.SENSOR_ORIENTATION_RAW, v);
}
if ((mSensors & SensorManager.SENSOR_ORIENTATION) != 0) {
v[0] = mYawfilter.filter(event.timestamp, v[0]);
mTarget.onSensorChanged(SensorManager.SENSOR_ORIENTATION, v);
}
} else {
mTarget.onSensorChanged(legacyType, v);
}
}
/*
* Helper function to convert the specified sensor's data to the windows's
* coordinate space from the device's coordinate space.
*
* output: 3,4,5: values in the old API format
* 0,1,2: transformed values in the old API format
*
*/
private void mapSensorDataToWindow(int sensor,
float[] values, int orientation) {
float x = values[0];
float y = values[1];
float z = values[2];
switch (sensor) {
case SensorManager.SENSOR_ORIENTATION:
case SensorManager.SENSOR_ORIENTATION_RAW:
z = -z;
break;
case SensorManager.SENSOR_ACCELEROMETER:
x = -x;
y = -y;
z = -z;
break;
case SensorManager.SENSOR_MAGNETIC_FIELD:
x = -x;
y = -y;
break;
}
values[0] = x;
values[1] = y;
values[2] = z;
values[3] = x;
values[4] = y;
values[5] = z;
if ((orientation & Surface.ROTATION_90) != 0) {
// handles 90 and 270 rotation
switch (sensor) {
case SensorManager.SENSOR_ACCELEROMETER:
case SensorManager.SENSOR_MAGNETIC_FIELD:
values[0] = -y;
values[1] = x;
values[2] = z;
break;
case SensorManager.SENSOR_ORIENTATION:
case SensorManager.SENSOR_ORIENTATION_RAW:
values[0] = x + ((x < 270) ? 90 : -270);
values[1] = z;
values[2] = y;
break;
}
}
if ((orientation & Surface.ROTATION_180) != 0) {
x = values[0];
y = values[1];
z = values[2];
// handles 180 (flip) and 270 (flip + 90) rotation
switch (sensor) {
case SensorManager.SENSOR_ACCELEROMETER:
case SensorManager.SENSOR_MAGNETIC_FIELD:
values[0] = -x;
values[1] = -y;
values[2] = z;
break;
case SensorManager.SENSOR_ORIENTATION:
case SensorManager.SENSOR_ORIENTATION_RAW:
values[0] = (x >= 180) ? (x - 180) : (x + 180);
values[1] = -y;
values[2] = -z;
break;
}
}
}
private static int getLegacySensorType(int type) {
switch (type) {
case Sensor.TYPE_ACCELEROMETER:
return SensorManager.SENSOR_ACCELEROMETER;
case Sensor.TYPE_MAGNETIC_FIELD:
return SensorManager.SENSOR_MAGNETIC_FIELD;
case Sensor.TYPE_ORIENTATION:
return SensorManager.SENSOR_ORIENTATION_RAW;
case Sensor.TYPE_TEMPERATURE:
return SensorManager.SENSOR_TEMPERATURE;
}
return 0;
}
}
private static final class LmsFilter {
private static final int SENSORS_RATE_MS = 20;
private static final int COUNT = 12;
private static final float PREDICTION_RATIO = 1.0f / 3.0f;
private static final float PREDICTION_TIME =
(SENSORS_RATE_MS * COUNT / 1000.0f) * PREDICTION_RATIO;
private float[] mV = new float[COUNT * 2];
private long[] mT = new long[COUNT * 2];
private int mIndex;
public LmsFilter() {
mIndex = COUNT;
}
public float filter(long time, float in) {
float v = in;
final float ns = 1.0f / 1000000000.0f;
float v1 = mV[mIndex];
if ((v - v1) > 180) {
v -= 360;
} else if ((v1 - v) > 180) {
v += 360;
}
/* Manage the circular buffer, we write the data twice spaced
* by COUNT values, so that we don't have to copy the array
* when it's full
*/
mIndex++;
if (mIndex >= COUNT * 2) {
mIndex = COUNT;
}
mV[mIndex] = v;
mT[mIndex] = time;
mV[mIndex - COUNT] = v;
mT[mIndex - COUNT] = time;
float A, B, C, D, E;
float a, b;
int i;
A = B = C = D = E = 0;
for (i = 0; i < COUNT - 1; i++) {
final int j = mIndex - 1 - i;
final float Z = mV[j];
final float T = (mT[j] / 2 + mT[j + 1] / 2 - time) * ns;
float dT = (mT[j] - mT[j + 1]) * ns;
dT *= dT;
A += Z * dT;
B += T * (T * dT);
C += (T * dT);
D += Z * (T * dT);
E += dT;
}
b = (A * B + C * D) / (E * B + C * C);
a = (E * b - A) / C;
float f = b + PREDICTION_TIME * a;
// Normalize
f *= (1.0f / 360.0f);
if (((f >= 0) ? f : -f) >= 0.5f) {
f = f - (float) Math.ceil(f + 0.5f) + 1.0f;
}
if (f < 0) {
f += 1.0f;
}
f *= 360.0f;
return f;
}
}
}
|