1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import android.annotation.UnsupportedAppUsage;
/**
* This class represents a {@link android.hardware.Sensor Sensor} event and
* holds information such as the sensor's type, the time-stamp, accuracy and of
* course the sensor's {@link SensorEvent#values data}.
*
* <p>
* <u>Definition of the coordinate system used by the SensorEvent API.</u>
* </p>
*
* <p>
* The coordinate-system is defined relative to the screen of the phone in its
* default orientation. The axes are not swapped when the device's screen
* orientation changes.
* </p>
*
* <p>
* The X axis is horizontal and points to the right, the Y axis is vertical and
* points up and the Z axis points towards the outside of the front face of the
* screen. In this system, coordinates behind the screen have negative Z values.
* </p>
*
* <p>
* <center><img src="../../../images/axis_device.png"
* alt="Sensors coordinate-system diagram." border="0" /></center>
* </p>
*
* <p>
* <b>Note:</b> This coordinate system is different from the one used in the
* Android 2D APIs where the origin is in the top-left corner.
* </p>
*
* @see SensorManager
* @see SensorEvent
* @see Sensor
*
*/
public class SensorEvent {
/**
* <p>
* The length and contents of the {@link #values values} array depends on
* which {@link android.hardware.Sensor sensor} type is being monitored (see
* also {@link SensorEvent} for a definition of the coordinate system used).
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
* Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
*
* <ul>
* <li> values[0]: Acceleration minus Gx on the x-axis </li>
* <li> values[1]: Acceleration minus Gy on the y-axis </li>
* <li> values[2]: Acceleration minus Gz on the z-axis </li>
* </ul>
*
* <p>
* A sensor of this type measures the acceleration applied to the device
* (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
* sensor itself (<b>Fs</b>) using the relation:
* </p>
*
* <b><center>Ad = - ∑Fs / mass</center></b>
*
* <p>
* In particular, the force of gravity is always influencing the measured
* acceleration:
* </p>
*
* <b><center>Ad = -g - ∑F / mass</center></b>
*
* <p>
* For this reason, when the device is sitting on a table (and obviously not
* accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
* m/s^2
* </p>
*
* <p>
* Similarly, when the device is in free-fall and therefore dangerously
* accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
* magnitude of 0 m/s^2.
* </p>
*
* <p>
* It should be apparent that in order to measure the real acceleration of
* the device, the contribution of the force of gravity must be eliminated.
* This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
* <i>low-pass</i> filter can be used to isolate the force of gravity.
* </p>
*
* <pre class="prettyprint">
*
* public void onSensorChanged(SensorEvent event)
* {
* // alpha is calculated as t / (t + dT)
* // with t, the low-pass filter's time-constant
* // and dT, the event delivery rate
*
* final float alpha = 0.8;
*
* gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
* gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
* gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
*
* linear_acceleration[0] = event.values[0] - gravity[0];
* linear_acceleration[1] = event.values[1] - gravity[1];
* linear_acceleration[2] = event.values[2] - gravity[2];
* }
* </pre>
*
* <p>
* <u>Examples</u>:
* <ul>
* <li>When the device lies flat on a table and is pushed on its left side
* toward the right, the x acceleration value is positive.</li>
*
* <li>When the device lies flat on a table, the acceleration value is
* +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
* the force of gravity (-9.81 m/s^2).</li>
*
* <li>When the device lies flat on a table and is pushed toward the sky
* with an acceleration of A m/s^2, the acceleration value is equal to
* A+9.81 which correspond to the acceleration of the device (+A m/s^2)
* minus the force of gravity (-9.81 m/s^2).</li>
* </ul>
*
*
* <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
* Sensor.TYPE_MAGNETIC_FIELD}:</h4>
* All values are in micro-Tesla (uT) and measure the ambient magnetic field
* in the X, Y and Z axis.
*
* <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
* </h4> All values are in radians/second and measure the rate of rotation
* around the device's local X, Y and Z axis. The coordinate system is the
* same as is used for the acceleration sensor. Rotation is positive in the
* counter-clockwise direction. That is, an observer looking from some
* positive location on the x, y or z axis at a device positioned on the
* origin would report positive rotation if the device appeared to be
* rotating counter clockwise. Note that this is the standard mathematical
* definition of positive rotation and does not agree with the definition of
* roll given earlier.
* <ul>
* <li> values[0]: Angular speed around the x-axis </li>
* <li> values[1]: Angular speed around the y-axis </li>
* <li> values[2]: Angular speed around the z-axis </li>
* </ul>
* <p>
* Typically the output of the gyroscope is integrated over time to
* calculate a rotation describing the change of angles over the time step,
* for example:
* </p>
*
* <pre class="prettyprint">
* private static final float NS2S = 1.0f / 1000000000.0f;
* private final float[] deltaRotationVector = new float[4]();
* private float timestamp;
*
* public void onSensorChanged(SensorEvent event) {
* // This time step's delta rotation to be multiplied by the current rotation
* // after computing it from the gyro sample data.
* if (timestamp != 0) {
* final float dT = (event.timestamp - timestamp) * NS2S;
* // Axis of the rotation sample, not normalized yet.
* float axisX = event.values[0];
* float axisY = event.values[1];
* float axisZ = event.values[2];
*
* // Calculate the angular speed of the sample
* float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
*
* // Normalize the rotation vector if it's big enough to get the axis
* if (omegaMagnitude > EPSILON) {
* axisX /= omegaMagnitude;
* axisY /= omegaMagnitude;
* axisZ /= omegaMagnitude;
* }
*
* // Integrate around this axis with the angular speed by the time step
* // in order to get a delta rotation from this sample over the time step
* // We will convert this axis-angle representation of the delta rotation
* // into a quaternion before turning it into the rotation matrix.
* float thetaOverTwo = omegaMagnitude * dT / 2.0f;
* float sinThetaOverTwo = sin(thetaOverTwo);
* float cosThetaOverTwo = cos(thetaOverTwo);
* deltaRotationVector[0] = sinThetaOverTwo * axisX;
* deltaRotationVector[1] = sinThetaOverTwo * axisY;
* deltaRotationVector[2] = sinThetaOverTwo * axisZ;
* deltaRotationVector[3] = cosThetaOverTwo;
* }
* timestamp = event.timestamp;
* float[] deltaRotationMatrix = new float[9];
* SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
* // User code should concatenate the delta rotation we computed with the current
* // rotation in order to get the updated rotation.
* // rotationCurrent = rotationCurrent * deltaRotationMatrix;
* }
* </pre>
* <p>
* In practice, the gyroscope noise and offset will introduce some errors
* which need to be compensated for. This is usually done using the
* information from other sensors, but is beyond the scope of this document.
* </p>
* <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
* <ul>
* <li>values[0]: Ambient light level in SI lux units </li>
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
* <ul>
* <li>values[0]: Atmospheric pressure in hPa (millibar) </li>
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
* </h4>
*
* <ul>
* <li>values[0]: Proximity sensor distance measured in centimeters </li>
* </ul>
*
* <p>
* <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
* <i>far</i> measurement. In this case, the sensor should report its
* {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
* the <i>far</i> state and a lesser value in the <i>near</i> state.
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
* <p>A three dimensional vector indicating the direction and magnitude of gravity. Units
* are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
* <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be
* identical to that of the accelerometer.</p>
*
* <h4>
* {@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:
* </h4> A three dimensional vector indicating acceleration along each device axis, not
* including gravity. All values have units of m/s^2. The coordinate system is the same as is
* used by the acceleration sensor.
* <p>The output of the accelerometer, gravity and linear-acceleration sensors must obey the
* following relation:</p>
* <p><ul>acceleration = gravity + linear-acceleration</ul></p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
* <p>The rotation vector represents the orientation of the device as a combination of an
* <i>angle</i> and an <i>axis</i>, in which the device has rotated through an angle θ
* around an axis <x, y, z>.</p>
* <p>The three elements of the rotation vector are
* <x*sin(θ/2), y*sin(θ/2), z*sin(θ/2)>, such that the magnitude of the rotation
* vector is equal to sin(θ/2), and the direction of the rotation vector is equal to the
* direction of the axis of rotation.</p>
* </p>The three elements of the rotation vector are equal to
* the last three components of a <b>unit</b> quaternion
* <cos(θ/2), x*sin(θ/2), y*sin(θ/2), z*sin(θ/2)>.</p>
* <p>Elements of the rotation vector are unitless.
* The x,y, and z axis are defined in the same way as the acceleration
* sensor.</p>
* The reference coordinate system is defined as a direct orthonormal basis,
* where:
* </p>
*
* <ul>
* <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
* the ground at the device's current location and roughly points East).</li>
* <li>Y is tangential to the ground at the device's current location and
* points towards magnetic north.</li>
* <li>Z points towards the sky and is perpendicular to the ground.</li>
* </ul>
*
* <p>
* <center><img src="../../../images/axis_globe.png"
* alt="World coordinate-system diagram." border="0" /></center>
* </p>
*
* <ul>
* <li> values[0]: x*sin(θ/2) </li>
* <li> values[1]: y*sin(θ/2) </li>
* <li> values[2]: z*sin(θ/2) </li>
* <li> values[3]: cos(θ/2) </li>
* <li> values[4]: estimated heading Accuracy (in radians) (-1 if unavailable)</li>
* </ul>
* <p> values[3], originally optional, will always be present from SDK Level 18 onwards.
* values[4] is a new value that has been added in SDK Level 18.
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
* Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
*
* <ul>
* <li> values[0]: Azimuth, angle between the magnetic north direction and the
* y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
* 270=West
* </p>
*
* <p>
* values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
* values when the z-axis moves <b>toward</b> the y-axis.
* </p>
*
* <p>
* values[2]: Roll, rotation around the y-axis (-90 to 90)
* increasing as the device moves clockwise.
* </p>
* </ul>
*
* <p>
* <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
* used in aviation where the X axis is along the long side of the plane
* (tail to nose).
* </p>
*
* <p>
* <b>Note:</b> This sensor type exists for legacy reasons, please use
* {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR
* rotation vector sensor type} and
* {@link android.hardware.SensorManager#getRotationMatrix
* getRotationMatrix()} in conjunction with
* {@link android.hardware.SensorManager#remapCoordinateSystem
* remapCoordinateSystem()} and
* {@link android.hardware.SensorManager#getOrientation getOrientation()} to
* compute these values instead.
* </p>
*
* <p>
* <b>Important note:</b> For historical reasons the roll angle is positive
* in the clockwise direction (mathematically speaking, it should be
* positive in the counter-clockwise direction).
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
* Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
* <ul>
* <li> values[0]: Relative ambient air humidity in percent </li>
* </ul>
* <p>
* When relative ambient air humidity and ambient temperature are
* measured, the dew point and absolute humidity can be calculated.
* </p>
* <u>Dew Point</u>
* <p>
* The dew point is the temperature to which a given parcel of air must be
* cooled, at constant barometric pressure, for water vapor to condense
* into water.
* </p>
* <center><pre>
* ln(RH/100%) + m·t/(T<sub>n</sub>+t)
* t<sub>d</sub>(t,RH) = T<sub>n</sub> · ------------------------------
* m - [ln(RH/100%) + m·t/(T<sub>n</sub>+t)]
* </pre></center>
* <dl>
* <dt>t<sub>d</sub></dt> <dd>dew point temperature in °C</dd>
* <dt>t</dt> <dd>actual temperature in °C</dd>
* <dt>RH</dt> <dd>actual relative humidity in %</dd>
* <dt>m</dt> <dd>17.62</dd>
* <dt>T<sub>n</sub></dt> <dd>243.12 °C</dd>
* </dl>
* <p>for example:</p>
* <pre class="prettyprint">
* h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
* td = 243.12 * h / (17.62 - h);
* </pre>
* <u>Absolute Humidity</u>
* <p>
* The absolute humidity is the mass of water vapor in a particular volume
* of dry air. The unit is g/m<sup>3</sup>.
* </p>
* <center><pre>
* RH/100%·A·exp(m·t/(T<sub>n</sub>+t))
* d<sub>v</sub>(t,RH) = 216.7 · -------------------------
* 273.15 + t
* </pre></center>
* <dl>
* <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
* <dt>t</dt> <dd>actual temperature in °C</dd>
* <dt>RH</dt> <dd>actual relative humidity in %</dd>
* <dt>m</dt> <dd>17.62</dd>
* <dt>T<sub>n</sub></dt> <dd>243.12 °C</dd>
* <dt>A</dt> <dd>6.112 hPa</dd>
* </dl>
* <p>for example:</p>
* <pre class="prettyprint">
* dv = 216.7 *
* (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
* </pre>
*
* <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
* </h4>
*
* <ul>
* <li> values[0]: ambient (room) temperature in degree Celsius.</li>
* </ul>
*
*
* <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD_UNCALIBRATED
* Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED}:</h4>
* Similar to {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD},
* but the hard iron calibration is reported separately instead of being included
* in the measurement. Factory calibration and temperature compensation will still
* be applied to the "uncalibrated" measurement. Assumptions that the magnetic field
* is due to the Earth's poles is avoided.
* <p>
* The values array is shown below:
* <ul>
* <li> values[0] = x_uncalib </li>
* <li> values[1] = y_uncalib </li>
* <li> values[2] = z_uncalib </li>
* <li> values[3] = x_bias </li>
* <li> values[4] = y_bias </li>
* <li> values[5] = z_bias </li>
* </ul>
* </p>
* <p>
* x_uncalib, y_uncalib, z_uncalib are the measured magnetic field in X, Y, Z axes.
* Soft iron and temperature calibrations are applied. But the hard iron
* calibration is not applied. The values are in micro-Tesla (uT).
* </p>
* <p>
* x_bias, y_bias, z_bias give the iron bias estimated in X, Y, Z axes.
* Each field is a component of the estimated hard iron calibration.
* The values are in micro-Tesla (uT).
* </p>
* <p> Hard iron - These distortions arise due to the magnetized iron, steel or permanent
* magnets on the device.
* Soft iron - These distortions arise due to the interaction with the earth's magnetic
* field.
* </p>
* <h4> {@link android.hardware.Sensor#TYPE_GAME_ROTATION_VECTOR
* Sensor.TYPE_GAME_ROTATION_VECTOR}:</h4>
* Identical to {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR} except that it
* doesn't use the geomagnetic field. Therefore the Y axis doesn't
* point north, but instead to some other reference, that reference is
* allowed to drift by the same order of magnitude as the gyroscope
* drift around the Z axis.
* <p>
* In the ideal case, a phone rotated and returning to the same real-world
* orientation will report the same game rotation vector
* (without using the earth's geomagnetic field). However, the orientation
* may drift somewhat over time. See {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR}
* for a detailed description of the values. This sensor will not have
* the estimated heading accuracy value.
* </p>
*
* <h4> {@link android.hardware.Sensor#TYPE_GYROSCOPE_UNCALIBRATED
* Sensor.TYPE_GYROSCOPE_UNCALIBRATED}:</h4>
* All values are in radians/second and measure the rate of rotation
* around the X, Y and Z axis. An estimation of the drift on each axis is
* reported as well.
* <p>
* No gyro-drift compensation is performed. Factory calibration and temperature
* compensation is still applied to the rate of rotation (angular speeds).
* </p>
* <p>
* The coordinate system is the same as is used for the
* {@link android.hardware.Sensor#TYPE_ACCELEROMETER}
* Rotation is positive in the counter-clockwise direction (right-hand rule).
* That is, an observer looking from some positive location on the x, y or z axis
* at a device positioned on the origin would report positive rotation if the device
* appeared to be rotating counter clockwise.
* The range would at least be 17.45 rad/s (ie: ~1000 deg/s).
* <ul>
* <li> values[0] : angular speed (w/o drift compensation) around the X axis in rad/s </li>
* <li> values[1] : angular speed (w/o drift compensation) around the Y axis in rad/s </li>
* <li> values[2] : angular speed (w/o drift compensation) around the Z axis in rad/s </li>
* <li> values[3] : estimated drift around X axis in rad/s </li>
* <li> values[4] : estimated drift around Y axis in rad/s </li>
* <li> values[5] : estimated drift around Z axis in rad/s </li>
* </ul>
* </p>
* <p><b>Pro Tip:</b> Always use the length of the values array while performing operations
* on it. In earlier versions, this used to be always 3 which has changed now. </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_POSE_6DOF
* Sensor.TYPE_POSE_6DOF}:</h4>
*
* A TYPE_POSE_6DOF event consists of a rotation expressed as a quaternion and a translation
* expressed in SI units. The event also contains a delta rotation and translation that show
* how the device?s pose has changed since the previous sequence numbered pose.
* The event uses the cannonical Android Sensor axes.
*
*
* <ul>
* <li> values[0]: x*sin(θ/2) </li>
* <li> values[1]: y*sin(θ/2) </li>
* <li> values[2]: z*sin(θ/2) </li>
* <li> values[3]: cos(θ/2) </li>
*
*
* <li> values[4]: Translation along x axis from an arbitrary origin. </li>
* <li> values[5]: Translation along y axis from an arbitrary origin. </li>
* <li> values[6]: Translation along z axis from an arbitrary origin. </li>
*
* <li> values[7]: Delta quaternion rotation x*sin(θ/2) </li>
* <li> values[8]: Delta quaternion rotation y*sin(θ/2) </li>
* <li> values[9]: Delta quaternion rotation z*sin(θ/2) </li>
* <li> values[10]: Delta quaternion rotation cos(θ/2) </li>
*
* <li> values[11]: Delta translation along x axis. </li>
* <li> values[12]: Delta translation along y axis. </li>
* <li> values[13]: Delta translation along z axis. </li>
*
* <li> values[14]: Sequence number </li>
*
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_STATIONARY_DETECT
* Sensor.TYPE_STATIONARY_DETECT}:</h4>
*
* A TYPE_STATIONARY_DETECT event is produced if the device has been
* stationary for at least 5 seconds with a maximal latency of 5
* additional seconds. ie: it may take up anywhere from 5 to 10 seconds
* afte the device has been at rest to trigger this event.
*
* The only allowed value is 1.0.
*
* <ul>
* <li> values[0]: 1.0 </li>
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_MOTION_DETECT
* Sensor.TYPE_MOTION_DETECT}:</h4>
*
* A TYPE_MOTION_DETECT event is produced if the device has been in
* motion for at least 5 seconds with a maximal latency of 5
* additional seconds. ie: it may take up anywhere from 5 to 10 seconds
* afte the device has been at rest to trigger this event.
*
* The only allowed value is 1.0.
*
* <ul>
* <li> values[0]: 1.0 </li>
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_HEART_BEAT
* Sensor.TYPE_HEART_BEAT}:</h4>
*
* A sensor of this type returns an event everytime a hear beat peak is
* detected.
*
* Peak here ideally corresponds to the positive peak in the QRS complex of
* an ECG signal.
*
* <ul>
* <li> values[0]: confidence</li>
* </ul>
*
* <p>
* A confidence value of 0.0 indicates complete uncertainty - that a peak
* is as likely to be at the indicated timestamp as anywhere else.
* A confidence value of 1.0 indicates complete certainly - that a peak is
* completely unlikely to be anywhere else on the QRS complex.
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_LOW_LATENCY_OFFBODY_DETECT
* Sensor.TYPE_LOW_LATENCY_OFFBODY_DETECT}:</h4>
*
* <p>
* A sensor of this type returns an event every time the device transitions
* from off-body to on-body and from on-body to off-body (e.g. a wearable
* device being removed from the wrist would trigger an event indicating an
* off-body transition). The event returned will contain a single value to
* indicate off-body state:
* </p>
*
* <ul>
* <li> values[0]: off-body state</li>
* </ul>
*
* <p>
* Valid values for off-body state:
* <ul>
* <li> 1.0 (device is on-body)</li>
* <li> 0.0 (device is off-body)</li>
* </ul>
* </p>
*
* <p>
* When a sensor of this type is activated, it must deliver the initial
* on-body or off-body event representing the current device state within
* 5 seconds of activating the sensor.
* </p>
*
* <p>
* This sensor must be able to detect and report an on-body to off-body
* transition within 1 second of the device being removed from the body,
* and must be able to detect and report an off-body to on-body transition
* within 5 seconds of the device being put back onto the body.
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER_UNCALIBRATED
* Sensor.TYPE_ACCELEROMETER_UNCALIBRATED}:</h4> All values are in SI
* units (m/s^2)
*
* Similar to {@link android.hardware.Sensor#TYPE_ACCELEROMETER},
* Factory calibration and temperature compensation will still be applied
* to the "uncalibrated" measurement.
*
* <p>
* The values array is shown below:
* <ul>
* <li> values[0] = x_uncalib without bias compensation </li>
* <li> values[1] = y_uncalib without bias compensation </li>
* <li> values[2] = z_uncalib without bias compensation </li>
* <li> values[3] = estimated x_bias </li>
* <li> values[4] = estimated y_bias </li>
* <li> values[5] = estimated z_bias </li>
* </ul>
* </p>
* <p>
* x_uncalib, y_uncalib, z_uncalib are the measured acceleration in X, Y, Z
* axes similar to the {@link android.hardware.Sensor#TYPE_ACCELEROMETER},
* without any bias correction (factory bias compensation and any
* temperature compensation is allowed).
* x_bias, y_bias, z_bias are the estimated biases.
* </p>
*
* @see GeomagneticField
*/
public final float[] values;
/**
* The sensor that generated this event. See
* {@link android.hardware.SensorManager SensorManager} for details.
*/
public Sensor sensor;
/**
* The accuracy of this event. See {@link android.hardware.SensorManager
* SensorManager} for details.
*/
public int accuracy;
/**
* The time in nanosecond at which the event happened
*/
public long timestamp;
@UnsupportedAppUsage
SensorEvent(int valueSize) {
values = new float[valueSize];
}
}
|