1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.os;
import android.annotation.NonNull;
import android.annotation.UnsupportedAppUsage;
import android.app.IAlarmManager;
import android.content.Context;
import android.location.ILocationManager;
import android.location.LocationTime;
import android.util.Slog;
import dalvik.annotation.optimization.CriticalNative;
import java.time.Clock;
import java.time.DateTimeException;
import java.time.ZoneOffset;
/**
* Core timekeeping facilities.
*
* <p> Three different clocks are available, and they should not be confused:
*
* <ul>
* <li> <p> {@link System#currentTimeMillis System.currentTimeMillis()}
* is the standard "wall" clock (time and date) expressing milliseconds
* since the epoch. The wall clock can be set by the user or the phone
* network (see {@link #setCurrentTimeMillis}), so the time may jump
* backwards or forwards unpredictably. This clock should only be used
* when correspondence with real-world dates and times is important, such
* as in a calendar or alarm clock application. Interval or elapsed
* time measurements should use a different clock. If you are using
* System.currentTimeMillis(), consider listening to the
* {@link android.content.Intent#ACTION_TIME_TICK ACTION_TIME_TICK},
* {@link android.content.Intent#ACTION_TIME_CHANGED ACTION_TIME_CHANGED}
* and {@link android.content.Intent#ACTION_TIMEZONE_CHANGED
* ACTION_TIMEZONE_CHANGED} {@link android.content.Intent Intent}
* broadcasts to find out when the time changes.
*
* <li> <p> {@link #uptimeMillis} is counted in milliseconds since the
* system was booted. This clock stops when the system enters deep
* sleep (CPU off, display dark, device waiting for external input),
* but is not affected by clock scaling, idle, or other power saving
* mechanisms. This is the basis for most interval timing
* such as {@link Thread#sleep(long) Thread.sleep(millls)},
* {@link Object#wait(long) Object.wait(millis)}, and
* {@link System#nanoTime System.nanoTime()}. This clock is guaranteed
* to be monotonic, and is suitable for interval timing when the
* interval does not span device sleep. Most methods that accept a
* timestamp value currently expect the {@link #uptimeMillis} clock.
*
* <li> <p> {@link #elapsedRealtime} and {@link #elapsedRealtimeNanos}
* return the time since the system was booted, and include deep sleep.
* This clock is guaranteed to be monotonic, and continues to tick even
* when the CPU is in power saving modes, so is the recommend basis
* for general purpose interval timing.
*
* </ul>
*
* There are several mechanisms for controlling the timing of events:
*
* <ul>
* <li> <p> Standard functions like {@link Thread#sleep(long)
* Thread.sleep(millis)} and {@link Object#wait(long) Object.wait(millis)}
* are always available. These functions use the {@link #uptimeMillis}
* clock; if the device enters sleep, the remainder of the time will be
* postponed until the device wakes up. These synchronous functions may
* be interrupted with {@link Thread#interrupt Thread.interrupt()}, and
* you must handle {@link InterruptedException}.
*
* <li> <p> {@link #sleep SystemClock.sleep(millis)} is a utility function
* very similar to {@link Thread#sleep(long) Thread.sleep(millis)}, but it
* ignores {@link InterruptedException}. Use this function for delays if
* you do not use {@link Thread#interrupt Thread.interrupt()}, as it will
* preserve the interrupted state of the thread.
*
* <li> <p> The {@link android.os.Handler} class can schedule asynchronous
* callbacks at an absolute or relative time. Handler objects also use the
* {@link #uptimeMillis} clock, and require an {@link android.os.Looper
* event loop} (normally present in any GUI application).
*
* <li> <p> The {@link android.app.AlarmManager} can trigger one-time or
* recurring events which occur even when the device is in deep sleep
* or your application is not running. Events may be scheduled with your
* choice of {@link java.lang.System#currentTimeMillis} (RTC) or
* {@link #elapsedRealtime} (ELAPSED_REALTIME), and cause an
* {@link android.content.Intent} broadcast when they occur.
* </ul>
*/
public final class SystemClock {
private static final String TAG = "SystemClock";
/**
* This class is uninstantiable.
*/
@UnsupportedAppUsage
private SystemClock() {
// This space intentionally left blank.
}
/**
* Waits a given number of milliseconds (of uptimeMillis) before returning.
* Similar to {@link java.lang.Thread#sleep(long)}, but does not throw
* {@link InterruptedException}; {@link Thread#interrupt()} events are
* deferred until the next interruptible operation. Does not return until
* at least the specified number of milliseconds has elapsed.
*
* @param ms to sleep before returning, in milliseconds of uptime.
*/
public static void sleep(long ms)
{
long start = uptimeMillis();
long duration = ms;
boolean interrupted = false;
do {
try {
Thread.sleep(duration);
}
catch (InterruptedException e) {
interrupted = true;
}
duration = start + ms - uptimeMillis();
} while (duration > 0);
if (interrupted) {
// Important: we don't want to quietly eat an interrupt() event,
// so we make sure to re-interrupt the thread so that the next
// call to Thread.sleep() or Object.wait() will be interrupted.
Thread.currentThread().interrupt();
}
}
/**
* Sets the current wall time, in milliseconds. Requires the calling
* process to have appropriate permissions.
*
* @return if the clock was successfully set to the specified time.
*/
public static boolean setCurrentTimeMillis(long millis) {
final IAlarmManager mgr = IAlarmManager.Stub
.asInterface(ServiceManager.getService(Context.ALARM_SERVICE));
if (mgr == null) {
return false;
}
try {
return mgr.setTime(millis);
} catch (RemoteException e) {
Slog.e(TAG, "Unable to set RTC", e);
} catch (SecurityException e) {
Slog.e(TAG, "Unable to set RTC", e);
}
return false;
}
/**
* Returns milliseconds since boot, not counting time spent in deep sleep.
*
* @return milliseconds of non-sleep uptime since boot.
*/
@CriticalNative
native public static long uptimeMillis();
/**
* @removed
*/
@Deprecated
public static @NonNull Clock uptimeMillisClock() {
return uptimeClock();
}
/**
* Return {@link Clock} that starts at system boot, not counting time spent
* in deep sleep.
*
* @removed
*/
public static @NonNull Clock uptimeClock() {
return new SimpleClock(ZoneOffset.UTC) {
@Override
public long millis() {
return SystemClock.uptimeMillis();
}
};
}
/**
* Returns milliseconds since boot, including time spent in sleep.
*
* @return elapsed milliseconds since boot.
*/
@CriticalNative
native public static long elapsedRealtime();
/**
* Return {@link Clock} that starts at system boot, including time spent in
* sleep.
*
* @removed
*/
public static @NonNull Clock elapsedRealtimeClock() {
return new SimpleClock(ZoneOffset.UTC) {
@Override
public long millis() {
return SystemClock.elapsedRealtime();
}
};
}
/**
* Returns nanoseconds since boot, including time spent in sleep.
*
* @return elapsed nanoseconds since boot.
*/
@CriticalNative
public static native long elapsedRealtimeNanos();
/**
* Returns milliseconds running in the current thread.
*
* @return elapsed milliseconds in the thread
*/
@CriticalNative
public static native long currentThreadTimeMillis();
/**
* Returns microseconds running in the current thread.
*
* @return elapsed microseconds in the thread
*
* @hide
*/
@UnsupportedAppUsage
@CriticalNative
public static native long currentThreadTimeMicro();
/**
* Returns current wall time in microseconds.
*
* @return elapsed microseconds in wall time
*
* @hide
*/
@UnsupportedAppUsage
@CriticalNative
public static native long currentTimeMicro();
/**
* Returns milliseconds since January 1, 1970 00:00:00.0 UTC, synchronized
* using a remote network source outside the device.
* <p>
* While the time returned by {@link System#currentTimeMillis()} can be
* adjusted by the user, the time returned by this method cannot be adjusted
* by the user. Note that synchronization may occur using an insecure
* network protocol, so the returned time should not be used for security
* purposes.
* <p>
* This performs no blocking network operations and returns values based on
* a recent successful synchronization event; it will either return a valid
* time or throw.
*
* @throws DateTimeException when no accurate network time can be provided.
* @hide
*/
public static long currentNetworkTimeMillis() {
final IAlarmManager mgr = IAlarmManager.Stub
.asInterface(ServiceManager.getService(Context.ALARM_SERVICE));
if (mgr != null) {
try {
return mgr.currentNetworkTimeMillis();
} catch (ParcelableException e) {
e.maybeRethrow(DateTimeException.class);
throw new RuntimeException(e);
} catch (RemoteException e) {
throw e.rethrowFromSystemServer();
}
} else {
throw new RuntimeException(new DeadSystemException());
}
}
/**
* Returns a {@link Clock} that starts at January 1, 1970 00:00:00.0 UTC,
* synchronized using a remote network source outside the device.
* <p>
* While the time returned by {@link System#currentTimeMillis()} can be
* adjusted by the user, the time returned by this method cannot be adjusted
* by the user. Note that synchronization may occur using an insecure
* network protocol, so the returned time should not be used for security
* purposes.
* <p>
* This performs no blocking network operations and returns values based on
* a recent successful synchronization event; it will either return a valid
* time or throw.
*
* @throws DateTimeException when no accurate network time can be provided.
* @hide
*/
public static @NonNull Clock currentNetworkTimeClock() {
return new SimpleClock(ZoneOffset.UTC) {
@Override
public long millis() {
return SystemClock.currentNetworkTimeMillis();
}
};
}
/**
* Returns a {@link Clock} that starts at January 1, 1970 00:00:00.0 UTC,
* synchronized using the device's location provider.
*
* @throws DateTimeException when the location provider has not had a location fix since boot.
*/
public static @NonNull Clock currentGnssTimeClock() {
return new SimpleClock(ZoneOffset.UTC) {
private final ILocationManager mMgr = ILocationManager.Stub
.asInterface(ServiceManager.getService(Context.LOCATION_SERVICE));
@Override
public long millis() {
LocationTime time;
try {
time = mMgr.getGnssTimeMillis();
} catch (RemoteException e) {
e.rethrowFromSystemServer();
return 0;
}
if (time == null) {
throw new DateTimeException("Gnss based time is not available.");
}
long currentNanos = elapsedRealtimeNanos();
long deltaMs = (currentNanos - time.getElapsedRealtimeNanos()) / 1000000L;
return time.getTime() + deltaMs;
}
};
}
}
|