1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
|
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.text;
import android.annotation.Nullable;
import android.annotation.UnsupportedAppUsage;
import android.graphics.BaseCanvas;
import android.graphics.Paint;
import android.util.Log;
import com.android.internal.annotations.GuardedBy;
import com.android.internal.util.ArrayUtils;
import com.android.internal.util.GrowingArrayUtils;
import libcore.util.EmptyArray;
import java.lang.reflect.Array;
import java.util.IdentityHashMap;
/**
* This is the class for text whose content and markup can both be changed.
*/
public class SpannableStringBuilder implements CharSequence, GetChars, Spannable, Editable,
Appendable, GraphicsOperations {
private final static String TAG = "SpannableStringBuilder";
/**
* Create a new SpannableStringBuilder with empty contents
*/
public SpannableStringBuilder() {
this("");
}
/**
* Create a new SpannableStringBuilder containing a copy of the
* specified text, including its spans if any.
*/
public SpannableStringBuilder(CharSequence text) {
this(text, 0, text.length());
}
/**
* Create a new SpannableStringBuilder containing a copy of the
* specified slice of the specified text, including its spans if any.
*/
public SpannableStringBuilder(CharSequence text, int start, int end) {
int srclen = end - start;
if (srclen < 0) throw new StringIndexOutOfBoundsException();
mText = ArrayUtils.newUnpaddedCharArray(GrowingArrayUtils.growSize(srclen));
mGapStart = srclen;
mGapLength = mText.length - srclen;
TextUtils.getChars(text, start, end, mText, 0);
mSpanCount = 0;
mSpanInsertCount = 0;
mSpans = EmptyArray.OBJECT;
mSpanStarts = EmptyArray.INT;
mSpanEnds = EmptyArray.INT;
mSpanFlags = EmptyArray.INT;
mSpanMax = EmptyArray.INT;
mSpanOrder = EmptyArray.INT;
if (text instanceof Spanned) {
Spanned sp = (Spanned) text;
Object[] spans = sp.getSpans(start, end, Object.class);
for (int i = 0; i < spans.length; i++) {
if (spans[i] instanceof NoCopySpan) {
continue;
}
int st = sp.getSpanStart(spans[i]) - start;
int en = sp.getSpanEnd(spans[i]) - start;
int fl = sp.getSpanFlags(spans[i]);
if (st < 0)
st = 0;
if (st > end - start)
st = end - start;
if (en < 0)
en = 0;
if (en > end - start)
en = end - start;
setSpan(false, spans[i], st, en, fl, false/*enforceParagraph*/);
}
restoreInvariants();
}
}
public static SpannableStringBuilder valueOf(CharSequence source) {
if (source instanceof SpannableStringBuilder) {
return (SpannableStringBuilder) source;
} else {
return new SpannableStringBuilder(source);
}
}
/**
* Return the char at the specified offset within the buffer.
*/
public char charAt(int where) {
int len = length();
if (where < 0) {
throw new IndexOutOfBoundsException("charAt: " + where + " < 0");
} else if (where >= len) {
throw new IndexOutOfBoundsException("charAt: " + where + " >= length " + len);
}
if (where >= mGapStart)
return mText[where + mGapLength];
else
return mText[where];
}
/**
* Return the number of chars in the buffer.
*/
public int length() {
return mText.length - mGapLength;
}
private void resizeFor(int size) {
final int oldLength = mText.length;
if (size + 1 <= oldLength) {
return;
}
char[] newText = ArrayUtils.newUnpaddedCharArray(GrowingArrayUtils.growSize(size));
System.arraycopy(mText, 0, newText, 0, mGapStart);
final int newLength = newText.length;
final int delta = newLength - oldLength;
final int after = oldLength - (mGapStart + mGapLength);
System.arraycopy(mText, oldLength - after, newText, newLength - after, after);
mText = newText;
mGapLength += delta;
if (mGapLength < 1)
new Exception("mGapLength < 1").printStackTrace();
if (mSpanCount != 0) {
for (int i = 0; i < mSpanCount; i++) {
if (mSpanStarts[i] > mGapStart) mSpanStarts[i] += delta;
if (mSpanEnds[i] > mGapStart) mSpanEnds[i] += delta;
}
calcMax(treeRoot());
}
}
private void moveGapTo(int where) {
if (where == mGapStart)
return;
boolean atEnd = (where == length());
if (where < mGapStart) {
int overlap = mGapStart - where;
System.arraycopy(mText, where, mText, mGapStart + mGapLength - overlap, overlap);
} else /* where > mGapStart */ {
int overlap = where - mGapStart;
System.arraycopy(mText, where + mGapLength - overlap, mText, mGapStart, overlap);
}
// TODO: be more clever (although the win really isn't that big)
if (mSpanCount != 0) {
for (int i = 0; i < mSpanCount; i++) {
int start = mSpanStarts[i];
int end = mSpanEnds[i];
if (start > mGapStart)
start -= mGapLength;
if (start > where)
start += mGapLength;
else if (start == where) {
int flag = (mSpanFlags[i] & START_MASK) >> START_SHIFT;
if (flag == POINT || (atEnd && flag == PARAGRAPH))
start += mGapLength;
}
if (end > mGapStart)
end -= mGapLength;
if (end > where)
end += mGapLength;
else if (end == where) {
int flag = (mSpanFlags[i] & END_MASK);
if (flag == POINT || (atEnd && flag == PARAGRAPH))
end += mGapLength;
}
mSpanStarts[i] = start;
mSpanEnds[i] = end;
}
calcMax(treeRoot());
}
mGapStart = where;
}
// Documentation from interface
public SpannableStringBuilder insert(int where, CharSequence tb, int start, int end) {
return replace(where, where, tb, start, end);
}
// Documentation from interface
public SpannableStringBuilder insert(int where, CharSequence tb) {
return replace(where, where, tb, 0, tb.length());
}
// Documentation from interface
public SpannableStringBuilder delete(int start, int end) {
SpannableStringBuilder ret = replace(start, end, "", 0, 0);
if (mGapLength > 2 * length())
resizeFor(length());
return ret; // == this
}
// Documentation from interface
public void clear() {
replace(0, length(), "", 0, 0);
mSpanInsertCount = 0;
}
// Documentation from interface
public void clearSpans() {
for (int i = mSpanCount - 1; i >= 0; i--) {
Object what = mSpans[i];
int ostart = mSpanStarts[i];
int oend = mSpanEnds[i];
if (ostart > mGapStart)
ostart -= mGapLength;
if (oend > mGapStart)
oend -= mGapLength;
mSpanCount = i;
mSpans[i] = null;
sendSpanRemoved(what, ostart, oend);
}
if (mIndexOfSpan != null) {
mIndexOfSpan.clear();
}
mSpanInsertCount = 0;
}
// Documentation from interface
public SpannableStringBuilder append(CharSequence text) {
int length = length();
return replace(length, length, text, 0, text.length());
}
/**
* Appends the character sequence {@code text} and spans {@code what} over the appended part.
* See {@link Spanned} for an explanation of what the flags mean.
* @param text the character sequence to append.
* @param what the object to be spanned over the appended text.
* @param flags see {@link Spanned}.
* @return this {@code SpannableStringBuilder}.
*/
public SpannableStringBuilder append(CharSequence text, Object what, int flags) {
int start = length();
append(text);
setSpan(what, start, length(), flags);
return this;
}
// Documentation from interface
public SpannableStringBuilder append(CharSequence text, int start, int end) {
int length = length();
return replace(length, length, text, start, end);
}
// Documentation from interface
public SpannableStringBuilder append(char text) {
return append(String.valueOf(text));
}
// Returns true if a node was removed (so we can restart search from root)
private boolean removeSpansForChange(int start, int end, boolean textIsRemoved, int i) {
if ((i & 1) != 0) {
// internal tree node
if (resolveGap(mSpanMax[i]) >= start &&
removeSpansForChange(start, end, textIsRemoved, leftChild(i))) {
return true;
}
}
if (i < mSpanCount) {
if ((mSpanFlags[i] & Spanned.SPAN_EXCLUSIVE_EXCLUSIVE) ==
Spanned.SPAN_EXCLUSIVE_EXCLUSIVE &&
mSpanStarts[i] >= start && mSpanStarts[i] < mGapStart + mGapLength &&
mSpanEnds[i] >= start && mSpanEnds[i] < mGapStart + mGapLength &&
// The following condition indicates that the span would become empty
(textIsRemoved || mSpanStarts[i] > start || mSpanEnds[i] < mGapStart)) {
mIndexOfSpan.remove(mSpans[i]);
removeSpan(i, 0 /* flags */);
return true;
}
return resolveGap(mSpanStarts[i]) <= end && (i & 1) != 0 &&
removeSpansForChange(start, end, textIsRemoved, rightChild(i));
}
return false;
}
private void change(int start, int end, CharSequence cs, int csStart, int csEnd) {
// Can be negative
final int replacedLength = end - start;
final int replacementLength = csEnd - csStart;
final int nbNewChars = replacementLength - replacedLength;
boolean changed = false;
for (int i = mSpanCount - 1; i >= 0; i--) {
int spanStart = mSpanStarts[i];
if (spanStart > mGapStart)
spanStart -= mGapLength;
int spanEnd = mSpanEnds[i];
if (spanEnd > mGapStart)
spanEnd -= mGapLength;
if ((mSpanFlags[i] & SPAN_PARAGRAPH) == SPAN_PARAGRAPH) {
int ost = spanStart;
int oen = spanEnd;
int clen = length();
if (spanStart > start && spanStart <= end) {
for (spanStart = end; spanStart < clen; spanStart++)
if (spanStart > end && charAt(spanStart - 1) == '\n')
break;
}
if (spanEnd > start && spanEnd <= end) {
for (spanEnd = end; spanEnd < clen; spanEnd++)
if (spanEnd > end && charAt(spanEnd - 1) == '\n')
break;
}
if (spanStart != ost || spanEnd != oen) {
setSpan(false, mSpans[i], spanStart, spanEnd, mSpanFlags[i],
true/*enforceParagraph*/);
changed = true;
}
}
int flags = 0;
if (spanStart == start) flags |= SPAN_START_AT_START;
else if (spanStart == end + nbNewChars) flags |= SPAN_START_AT_END;
if (spanEnd == start) flags |= SPAN_END_AT_START;
else if (spanEnd == end + nbNewChars) flags |= SPAN_END_AT_END;
mSpanFlags[i] |= flags;
}
if (changed) {
restoreInvariants();
}
moveGapTo(end);
if (nbNewChars >= mGapLength) {
resizeFor(mText.length + nbNewChars - mGapLength);
}
final boolean textIsRemoved = replacementLength == 0;
// The removal pass needs to be done before the gap is updated in order to broadcast the
// correct previous positions to the correct intersecting SpanWatchers
if (replacedLength > 0) { // no need for span fixup on pure insertion
while (mSpanCount > 0 &&
removeSpansForChange(start, end, textIsRemoved, treeRoot())) {
// keep deleting spans as needed, and restart from root after every deletion
// because deletion can invalidate an index.
}
}
mGapStart += nbNewChars;
mGapLength -= nbNewChars;
if (mGapLength < 1)
new Exception("mGapLength < 1").printStackTrace();
TextUtils.getChars(cs, csStart, csEnd, mText, start);
if (replacedLength > 0) { // no need for span fixup on pure insertion
// TODO potential optimization: only update bounds on intersecting spans
final boolean atEnd = (mGapStart + mGapLength == mText.length);
for (int i = 0; i < mSpanCount; i++) {
final int startFlag = (mSpanFlags[i] & START_MASK) >> START_SHIFT;
mSpanStarts[i] = updatedIntervalBound(mSpanStarts[i], start, nbNewChars, startFlag,
atEnd, textIsRemoved);
final int endFlag = (mSpanFlags[i] & END_MASK);
mSpanEnds[i] = updatedIntervalBound(mSpanEnds[i], start, nbNewChars, endFlag,
atEnd, textIsRemoved);
}
// TODO potential optimization: only fix up invariants when bounds actually changed
restoreInvariants();
}
if (cs instanceof Spanned) {
Spanned sp = (Spanned) cs;
Object[] spans = sp.getSpans(csStart, csEnd, Object.class);
for (int i = 0; i < spans.length; i++) {
int st = sp.getSpanStart(spans[i]);
int en = sp.getSpanEnd(spans[i]);
if (st < csStart) st = csStart;
if (en > csEnd) en = csEnd;
// Add span only if this object is not yet used as a span in this string
if (getSpanStart(spans[i]) < 0) {
int copySpanStart = st - csStart + start;
int copySpanEnd = en - csStart + start;
int copySpanFlags = sp.getSpanFlags(spans[i]) | SPAN_ADDED;
setSpan(false, spans[i], copySpanStart, copySpanEnd, copySpanFlags,
false/*enforceParagraph*/);
}
}
restoreInvariants();
}
}
private int updatedIntervalBound(int offset, int start, int nbNewChars, int flag, boolean atEnd,
boolean textIsRemoved) {
if (offset >= start && offset < mGapStart + mGapLength) {
if (flag == POINT) {
// A POINT located inside the replaced range should be moved to the end of the
// replaced text.
// The exception is when the point is at the start of the range and we are doing a
// text replacement (as opposed to a deletion): the point stays there.
if (textIsRemoved || offset > start) {
return mGapStart + mGapLength;
}
} else {
if (flag == PARAGRAPH) {
if (atEnd) {
return mGapStart + mGapLength;
}
} else { // MARK
// MARKs should be moved to the start, with the exception of a mark located at
// the end of the range (which will be < mGapStart + mGapLength since mGapLength
// is > 0, which should stay 'unchanged' at the end of the replaced text.
if (textIsRemoved || offset < mGapStart - nbNewChars) {
return start;
} else {
// Move to the end of replaced text (needed if nbNewChars != 0)
return mGapStart;
}
}
}
}
return offset;
}
// Note: caller is responsible for removing the mIndexOfSpan entry.
private void removeSpan(int i, int flags) {
Object object = mSpans[i];
int start = mSpanStarts[i];
int end = mSpanEnds[i];
if (start > mGapStart) start -= mGapLength;
if (end > mGapStart) end -= mGapLength;
int count = mSpanCount - (i + 1);
System.arraycopy(mSpans, i + 1, mSpans, i, count);
System.arraycopy(mSpanStarts, i + 1, mSpanStarts, i, count);
System.arraycopy(mSpanEnds, i + 1, mSpanEnds, i, count);
System.arraycopy(mSpanFlags, i + 1, mSpanFlags, i, count);
System.arraycopy(mSpanOrder, i + 1, mSpanOrder, i, count);
mSpanCount--;
invalidateIndex(i);
mSpans[mSpanCount] = null;
// Invariants must be restored before sending span removed notifications.
restoreInvariants();
if ((flags & Spanned.SPAN_INTERMEDIATE) == 0) {
sendSpanRemoved(object, start, end);
}
}
// Documentation from interface
public SpannableStringBuilder replace(int start, int end, CharSequence tb) {
return replace(start, end, tb, 0, tb.length());
}
// Documentation from interface
public SpannableStringBuilder replace(final int start, final int end,
CharSequence tb, int tbstart, int tbend) {
checkRange("replace", start, end);
int filtercount = mFilters.length;
for (int i = 0; i < filtercount; i++) {
CharSequence repl = mFilters[i].filter(tb, tbstart, tbend, this, start, end);
if (repl != null) {
tb = repl;
tbstart = 0;
tbend = repl.length();
}
}
final int origLen = end - start;
final int newLen = tbend - tbstart;
if (origLen == 0 && newLen == 0 && !hasNonExclusiveExclusiveSpanAt(tb, tbstart)) {
// This is a no-op iif there are no spans in tb that would be added (with a 0-length)
// Early exit so that the text watchers do not get notified
return this;
}
TextWatcher[] textWatchers = getSpans(start, start + origLen, TextWatcher.class);
sendBeforeTextChanged(textWatchers, start, origLen, newLen);
// Try to keep the cursor / selection at the same relative position during
// a text replacement. If replaced or replacement text length is zero, this
// is already taken care of.
boolean adjustSelection = origLen != 0 && newLen != 0;
int selectionStart = 0;
int selectionEnd = 0;
if (adjustSelection) {
selectionStart = Selection.getSelectionStart(this);
selectionEnd = Selection.getSelectionEnd(this);
}
change(start, end, tb, tbstart, tbend);
if (adjustSelection) {
boolean changed = false;
if (selectionStart > start && selectionStart < end) {
final long diff = selectionStart - start;
final int offset = Math.toIntExact(diff * newLen / origLen);
selectionStart = start + offset;
changed = true;
setSpan(false, Selection.SELECTION_START, selectionStart, selectionStart,
Spanned.SPAN_POINT_POINT, true/*enforceParagraph*/);
}
if (selectionEnd > start && selectionEnd < end) {
final long diff = selectionEnd - start;
final int offset = Math.toIntExact(diff * newLen / origLen);
selectionEnd = start + offset;
changed = true;
setSpan(false, Selection.SELECTION_END, selectionEnd, selectionEnd,
Spanned.SPAN_POINT_POINT, true/*enforceParagraph*/);
}
if (changed) {
restoreInvariants();
}
}
sendTextChanged(textWatchers, start, origLen, newLen);
sendAfterTextChanged(textWatchers);
// Span watchers need to be called after text watchers, which may update the layout
sendToSpanWatchers(start, end, newLen - origLen);
return this;
}
private static boolean hasNonExclusiveExclusiveSpanAt(CharSequence text, int offset) {
if (text instanceof Spanned) {
Spanned spanned = (Spanned) text;
Object[] spans = spanned.getSpans(offset, offset, Object.class);
final int length = spans.length;
for (int i = 0; i < length; i++) {
Object span = spans[i];
int flags = spanned.getSpanFlags(span);
if (flags != Spanned.SPAN_EXCLUSIVE_EXCLUSIVE) return true;
}
}
return false;
}
@UnsupportedAppUsage
private void sendToSpanWatchers(int replaceStart, int replaceEnd, int nbNewChars) {
for (int i = 0; i < mSpanCount; i++) {
int spanFlags = mSpanFlags[i];
// This loop handles only modified (not added) spans.
if ((spanFlags & SPAN_ADDED) != 0) continue;
int spanStart = mSpanStarts[i];
int spanEnd = mSpanEnds[i];
if (spanStart > mGapStart) spanStart -= mGapLength;
if (spanEnd > mGapStart) spanEnd -= mGapLength;
int newReplaceEnd = replaceEnd + nbNewChars;
boolean spanChanged = false;
int previousSpanStart = spanStart;
if (spanStart > newReplaceEnd) {
if (nbNewChars != 0) {
previousSpanStart -= nbNewChars;
spanChanged = true;
}
} else if (spanStart >= replaceStart) {
// No change if span start was already at replace interval boundaries before replace
if ((spanStart != replaceStart ||
((spanFlags & SPAN_START_AT_START) != SPAN_START_AT_START)) &&
(spanStart != newReplaceEnd ||
((spanFlags & SPAN_START_AT_END) != SPAN_START_AT_END))) {
// TODO A correct previousSpanStart cannot be computed at this point.
// It would require to save all the previous spans' positions before the replace
// Using an invalid -1 value to convey this would break the broacast range
spanChanged = true;
}
}
int previousSpanEnd = spanEnd;
if (spanEnd > newReplaceEnd) {
if (nbNewChars != 0) {
previousSpanEnd -= nbNewChars;
spanChanged = true;
}
} else if (spanEnd >= replaceStart) {
// No change if span start was already at replace interval boundaries before replace
if ((spanEnd != replaceStart ||
((spanFlags & SPAN_END_AT_START) != SPAN_END_AT_START)) &&
(spanEnd != newReplaceEnd ||
((spanFlags & SPAN_END_AT_END) != SPAN_END_AT_END))) {
// TODO same as above for previousSpanEnd
spanChanged = true;
}
}
if (spanChanged) {
sendSpanChanged(mSpans[i], previousSpanStart, previousSpanEnd, spanStart, spanEnd);
}
mSpanFlags[i] &= ~SPAN_START_END_MASK;
}
// Handle added spans
for (int i = 0; i < mSpanCount; i++) {
int spanFlags = mSpanFlags[i];
if ((spanFlags & SPAN_ADDED) != 0) {
mSpanFlags[i] &= ~SPAN_ADDED;
int spanStart = mSpanStarts[i];
int spanEnd = mSpanEnds[i];
if (spanStart > mGapStart) spanStart -= mGapLength;
if (spanEnd > mGapStart) spanEnd -= mGapLength;
sendSpanAdded(mSpans[i], spanStart, spanEnd);
}
}
}
/**
* Mark the specified range of text with the specified object.
* The flags determine how the span will behave when text is
* inserted at the start or end of the span's range.
*/
public void setSpan(Object what, int start, int end, int flags) {
setSpan(true, what, start, end, flags, true/*enforceParagraph*/);
}
// Note: if send is false, then it is the caller's responsibility to restore
// invariants. If send is false and the span already exists, then this method
// will not change the index of any spans.
private void setSpan(boolean send, Object what, int start, int end, int flags,
boolean enforceParagraph) {
checkRange("setSpan", start, end);
int flagsStart = (flags & START_MASK) >> START_SHIFT;
if (isInvalidParagraph(start, flagsStart)) {
if (!enforceParagraph) {
// do not set the span
return;
}
throw new RuntimeException("PARAGRAPH span must start at paragraph boundary"
+ " (" + start + " follows " + charAt(start - 1) + ")");
}
int flagsEnd = flags & END_MASK;
if (isInvalidParagraph(end, flagsEnd)) {
if (!enforceParagraph) {
// do not set the span
return;
}
throw new RuntimeException("PARAGRAPH span must end at paragraph boundary"
+ " (" + end + " follows " + charAt(end - 1) + ")");
}
// 0-length Spanned.SPAN_EXCLUSIVE_EXCLUSIVE
if (flagsStart == POINT && flagsEnd == MARK && start == end) {
if (send) {
Log.e(TAG, "SPAN_EXCLUSIVE_EXCLUSIVE spans cannot have a zero length");
}
// Silently ignore invalid spans when they are created from this class.
// This avoids the duplication of the above test code before all the
// calls to setSpan that are done in this class
return;
}
int nstart = start;
int nend = end;
if (start > mGapStart) {
start += mGapLength;
} else if (start == mGapStart) {
if (flagsStart == POINT || (flagsStart == PARAGRAPH && start == length()))
start += mGapLength;
}
if (end > mGapStart) {
end += mGapLength;
} else if (end == mGapStart) {
if (flagsEnd == POINT || (flagsEnd == PARAGRAPH && end == length()))
end += mGapLength;
}
if (mIndexOfSpan != null) {
Integer index = mIndexOfSpan.get(what);
if (index != null) {
int i = index;
int ostart = mSpanStarts[i];
int oend = mSpanEnds[i];
if (ostart > mGapStart)
ostart -= mGapLength;
if (oend > mGapStart)
oend -= mGapLength;
mSpanStarts[i] = start;
mSpanEnds[i] = end;
mSpanFlags[i] = flags;
if (send) {
restoreInvariants();
sendSpanChanged(what, ostart, oend, nstart, nend);
}
return;
}
}
mSpans = GrowingArrayUtils.append(mSpans, mSpanCount, what);
mSpanStarts = GrowingArrayUtils.append(mSpanStarts, mSpanCount, start);
mSpanEnds = GrowingArrayUtils.append(mSpanEnds, mSpanCount, end);
mSpanFlags = GrowingArrayUtils.append(mSpanFlags, mSpanCount, flags);
mSpanOrder = GrowingArrayUtils.append(mSpanOrder, mSpanCount, mSpanInsertCount);
invalidateIndex(mSpanCount);
mSpanCount++;
mSpanInsertCount++;
// Make sure there is enough room for empty interior nodes.
// This magic formula computes the size of the smallest perfect binary
// tree no smaller than mSpanCount.
int sizeOfMax = 2 * treeRoot() + 1;
if (mSpanMax.length < sizeOfMax) {
mSpanMax = new int[sizeOfMax];
}
if (send) {
restoreInvariants();
sendSpanAdded(what, nstart, nend);
}
}
private boolean isInvalidParagraph(int index, int flag) {
return flag == PARAGRAPH && index != 0 && index != length() && charAt(index - 1) != '\n';
}
/**
* Remove the specified markup object from the buffer.
*/
public void removeSpan(Object what) {
removeSpan(what, 0 /* flags */);
}
/**
* Remove the specified markup object from the buffer.
*
* @hide
*/
public void removeSpan(Object what, int flags) {
if (mIndexOfSpan == null) return;
Integer i = mIndexOfSpan.remove(what);
if (i != null) {
removeSpan(i.intValue(), flags);
}
}
/**
* Return externally visible offset given offset into gapped buffer.
*/
private int resolveGap(int i) {
return i > mGapStart ? i - mGapLength : i;
}
/**
* Return the buffer offset of the beginning of the specified
* markup object, or -1 if it is not attached to this buffer.
*/
public int getSpanStart(Object what) {
if (mIndexOfSpan == null) return -1;
Integer i = mIndexOfSpan.get(what);
return i == null ? -1 : resolveGap(mSpanStarts[i]);
}
/**
* Return the buffer offset of the end of the specified
* markup object, or -1 if it is not attached to this buffer.
*/
public int getSpanEnd(Object what) {
if (mIndexOfSpan == null) return -1;
Integer i = mIndexOfSpan.get(what);
return i == null ? -1 : resolveGap(mSpanEnds[i]);
}
/**
* Return the flags of the end of the specified
* markup object, or 0 if it is not attached to this buffer.
*/
public int getSpanFlags(Object what) {
if (mIndexOfSpan == null) return 0;
Integer i = mIndexOfSpan.get(what);
return i == null ? 0 : mSpanFlags[i];
}
/**
* Return an array of the spans of the specified type that overlap
* the specified range of the buffer. The kind may be Object.class to get
* a list of all the spans regardless of type.
*/
@SuppressWarnings("unchecked")
public <T> T[] getSpans(int queryStart, int queryEnd, @Nullable Class<T> kind) {
return getSpans(queryStart, queryEnd, kind, true);
}
/**
* Return an array of the spans of the specified type that overlap
* the specified range of the buffer. The kind may be Object.class to get
* a list of all the spans regardless of type.
*
* @param queryStart Start index.
* @param queryEnd End index.
* @param kind Class type to search for.
* @param sortByInsertionOrder If true the results are sorted by the insertion order.
* @param <T>
* @return Array of the spans. Empty array if no results are found.
*
* @hide
*/
@UnsupportedAppUsage
public <T> T[] getSpans(int queryStart, int queryEnd, @Nullable Class<T> kind,
boolean sortByInsertionOrder) {
if (kind == null) return (T[]) ArrayUtils.emptyArray(Object.class);
if (mSpanCount == 0) return ArrayUtils.emptyArray(kind);
int count = countSpans(queryStart, queryEnd, kind, treeRoot());
if (count == 0) {
return ArrayUtils.emptyArray(kind);
}
// Safe conversion, but requires a suppressWarning
T[] ret = (T[]) Array.newInstance(kind, count);
final int[] prioSortBuffer = sortByInsertionOrder ? obtain(count) : EmptyArray.INT;
final int[] orderSortBuffer = sortByInsertionOrder ? obtain(count) : EmptyArray.INT;
getSpansRec(queryStart, queryEnd, kind, treeRoot(), ret, prioSortBuffer,
orderSortBuffer, 0, sortByInsertionOrder);
if (sortByInsertionOrder) {
sort(ret, prioSortBuffer, orderSortBuffer);
recycle(prioSortBuffer);
recycle(orderSortBuffer);
}
return ret;
}
private int countSpans(int queryStart, int queryEnd, Class kind, int i) {
int count = 0;
if ((i & 1) != 0) {
// internal tree node
int left = leftChild(i);
int spanMax = mSpanMax[left];
if (spanMax > mGapStart) {
spanMax -= mGapLength;
}
if (spanMax >= queryStart) {
count = countSpans(queryStart, queryEnd, kind, left);
}
}
if (i < mSpanCount) {
int spanStart = mSpanStarts[i];
if (spanStart > mGapStart) {
spanStart -= mGapLength;
}
if (spanStart <= queryEnd) {
int spanEnd = mSpanEnds[i];
if (spanEnd > mGapStart) {
spanEnd -= mGapLength;
}
if (spanEnd >= queryStart &&
(spanStart == spanEnd || queryStart == queryEnd ||
(spanStart != queryEnd && spanEnd != queryStart)) &&
(Object.class == kind || kind.isInstance(mSpans[i]))) {
count++;
}
if ((i & 1) != 0) {
count += countSpans(queryStart, queryEnd, kind, rightChild(i));
}
}
}
return count;
}
/**
* Fills the result array with the spans found under the current interval tree node.
*
* @param queryStart Start index for the interval query.
* @param queryEnd End index for the interval query.
* @param kind Class type to search for.
* @param i Index of the current tree node.
* @param ret Array to be filled with results.
* @param priority Buffer to keep record of the priorities of spans found.
* @param insertionOrder Buffer to keep record of the insertion orders of spans found.
* @param count The number of found spans.
* @param sort Flag to fill the priority and insertion order buffers. If false then
* the spans with priority flag will be sorted in the result array.
* @param <T>
* @return The total number of spans found.
*/
@SuppressWarnings("unchecked")
private <T> int getSpansRec(int queryStart, int queryEnd, Class<T> kind,
int i, T[] ret, int[] priority, int[] insertionOrder, int count, boolean sort) {
if ((i & 1) != 0) {
// internal tree node
int left = leftChild(i);
int spanMax = mSpanMax[left];
if (spanMax > mGapStart) {
spanMax -= mGapLength;
}
if (spanMax >= queryStart) {
count = getSpansRec(queryStart, queryEnd, kind, left, ret, priority,
insertionOrder, count, sort);
}
}
if (i >= mSpanCount) return count;
int spanStart = mSpanStarts[i];
if (spanStart > mGapStart) {
spanStart -= mGapLength;
}
if (spanStart <= queryEnd) {
int spanEnd = mSpanEnds[i];
if (spanEnd > mGapStart) {
spanEnd -= mGapLength;
}
if (spanEnd >= queryStart &&
(spanStart == spanEnd || queryStart == queryEnd ||
(spanStart != queryEnd && spanEnd != queryStart)) &&
(Object.class == kind || kind.isInstance(mSpans[i]))) {
int spanPriority = mSpanFlags[i] & SPAN_PRIORITY;
int target = count;
if (sort) {
priority[target] = spanPriority;
insertionOrder[target] = mSpanOrder[i];
} else if (spanPriority != 0) {
//insertion sort for elements with priority
int j = 0;
for (; j < count; j++) {
int p = getSpanFlags(ret[j]) & SPAN_PRIORITY;
if (spanPriority > p) break;
}
System.arraycopy(ret, j, ret, j + 1, count - j);
target = j;
}
ret[target] = (T) mSpans[i];
count++;
}
if (count < ret.length && (i & 1) != 0) {
count = getSpansRec(queryStart, queryEnd, kind, rightChild(i), ret, priority,
insertionOrder, count, sort);
}
}
return count;
}
/**
* Obtain a temporary sort buffer.
*
* @param elementCount the size of the int[] to be returned
* @return an int[] with elementCount length
*/
private static int[] obtain(final int elementCount) {
int[] result = null;
synchronized (sCachedIntBuffer) {
// try finding a tmp buffer with length of at least elementCount
// if not get the first available one
int candidateIndex = -1;
for (int i = sCachedIntBuffer.length - 1; i >= 0; i--) {
if (sCachedIntBuffer[i] != null) {
if (sCachedIntBuffer[i].length >= elementCount) {
candidateIndex = i;
break;
} else if (candidateIndex == -1) {
candidateIndex = i;
}
}
}
if (candidateIndex != -1) {
result = sCachedIntBuffer[candidateIndex];
sCachedIntBuffer[candidateIndex] = null;
}
}
result = checkSortBuffer(result, elementCount);
return result;
}
/**
* Recycle sort buffer.
*
* @param buffer buffer to be recycled
*/
private static void recycle(int[] buffer) {
synchronized (sCachedIntBuffer) {
for (int i = 0; i < sCachedIntBuffer.length; i++) {
if (sCachedIntBuffer[i] == null || buffer.length > sCachedIntBuffer[i].length) {
sCachedIntBuffer[i] = buffer;
break;
}
}
}
}
/**
* Check the size of the buffer and grow if required.
*
* @param buffer buffer to be checked.
* @param size required size.
* @return Same buffer instance if the current size is greater than required size. Otherwise a
* new instance is created and returned.
*/
private static int[] checkSortBuffer(int[] buffer, int size) {
if (buffer == null || size > buffer.length) {
return ArrayUtils.newUnpaddedIntArray(GrowingArrayUtils.growSize(size));
}
return buffer;
}
/**
* An iterative heap sort implementation. It will sort the spans using first their priority
* then insertion order. A span with higher priority will be before a span with lower
* priority. If priorities are the same, the spans will be sorted with insertion order. A
* span with a lower insertion order will be before a span with a higher insertion order.
*
* @param array Span array to be sorted.
* @param priority Priorities of the spans
* @param insertionOrder Insertion orders of the spans
* @param <T> Span object type.
* @param <T>
*/
private final <T> void sort(T[] array, int[] priority, int[] insertionOrder) {
int size = array.length;
for (int i = size / 2 - 1; i >= 0; i--) {
siftDown(i, array, size, priority, insertionOrder);
}
for (int i = size - 1; i > 0; i--) {
final T tmpSpan = array[0];
array[0] = array[i];
array[i] = tmpSpan;
final int tmpPriority = priority[0];
priority[0] = priority[i];
priority[i] = tmpPriority;
final int tmpOrder = insertionOrder[0];
insertionOrder[0] = insertionOrder[i];
insertionOrder[i] = tmpOrder;
siftDown(0, array, i, priority, insertionOrder);
}
}
/**
* Helper function for heap sort.
*
* @param index Index of the element to sift down.
* @param array Span array to be sorted.
* @param size Current heap size.
* @param priority Priorities of the spans
* @param insertionOrder Insertion orders of the spans
* @param <T> Span object type.
*/
private final <T> void siftDown(int index, T[] array, int size, int[] priority,
int[] insertionOrder) {
int left = 2 * index + 1;
while (left < size) {
if (left < size - 1 && compareSpans(left, left + 1, priority, insertionOrder) < 0) {
left++;
}
if (compareSpans(index, left, priority, insertionOrder) >= 0) {
break;
}
final T tmpSpan = array[index];
array[index] = array[left];
array[left] = tmpSpan;
final int tmpPriority = priority[index];
priority[index] = priority[left];
priority[left] = tmpPriority;
final int tmpOrder = insertionOrder[index];
insertionOrder[index] = insertionOrder[left];
insertionOrder[left] = tmpOrder;
index = left;
left = 2 * index + 1;
}
}
/**
* Compare two span elements in an array. Comparison is based first on the priority flag of
* the span, and then the insertion order of the span.
*
* @param left Index of the element to compare.
* @param right Index of the other element to compare.
* @param priority Priorities of the spans
* @param insertionOrder Insertion orders of the spans
* @return
*/
private final int compareSpans(int left, int right, int[] priority,
int[] insertionOrder) {
int priority1 = priority[left];
int priority2 = priority[right];
if (priority1 == priority2) {
return Integer.compare(insertionOrder[left], insertionOrder[right]);
}
// since high priority has to be before a lower priority, the arguments to compare are
// opposite of the insertion order check.
return Integer.compare(priority2, priority1);
}
/**
* Return the next offset after <code>start</code> but less than or
* equal to <code>limit</code> where a span of the specified type
* begins or ends.
*/
public int nextSpanTransition(int start, int limit, Class kind) {
if (mSpanCount == 0) return limit;
if (kind == null) {
kind = Object.class;
}
return nextSpanTransitionRec(start, limit, kind, treeRoot());
}
private int nextSpanTransitionRec(int start, int limit, Class kind, int i) {
if ((i & 1) != 0) {
// internal tree node
int left = leftChild(i);
if (resolveGap(mSpanMax[left]) > start) {
limit = nextSpanTransitionRec(start, limit, kind, left);
}
}
if (i < mSpanCount) {
int st = resolveGap(mSpanStarts[i]);
int en = resolveGap(mSpanEnds[i]);
if (st > start && st < limit && kind.isInstance(mSpans[i]))
limit = st;
if (en > start && en < limit && kind.isInstance(mSpans[i]))
limit = en;
if (st < limit && (i & 1) != 0) {
limit = nextSpanTransitionRec(start, limit, kind, rightChild(i));
}
}
return limit;
}
/**
* Return a new CharSequence containing a copy of the specified
* range of this buffer, including the overlapping spans.
*/
public CharSequence subSequence(int start, int end) {
return new SpannableStringBuilder(this, start, end);
}
/**
* Copy the specified range of chars from this buffer into the
* specified array, beginning at the specified offset.
*/
public void getChars(int start, int end, char[] dest, int destoff) {
checkRange("getChars", start, end);
if (end <= mGapStart) {
System.arraycopy(mText, start, dest, destoff, end - start);
} else if (start >= mGapStart) {
System.arraycopy(mText, start + mGapLength, dest, destoff, end - start);
} else {
System.arraycopy(mText, start, dest, destoff, mGapStart - start);
System.arraycopy(mText, mGapStart + mGapLength,
dest, destoff + (mGapStart - start),
end - mGapStart);
}
}
/**
* Return a String containing a copy of the chars in this buffer.
*/
@Override
public String toString() {
int len = length();
char[] buf = new char[len];
getChars(0, len, buf, 0);
return new String(buf);
}
/**
* Return a String containing a copy of the chars in this buffer, limited to the
* [start, end[ range.
* @hide
*/
@UnsupportedAppUsage
public String substring(int start, int end) {
char[] buf = new char[end - start];
getChars(start, end, buf, 0);
return new String(buf);
}
/**
* Returns the depth of TextWatcher callbacks. Returns 0 when the object is not handling
* TextWatchers. A return value greater than 1 implies that a TextWatcher caused a change that
* recursively triggered a TextWatcher.
*/
public int getTextWatcherDepth() {
return mTextWatcherDepth;
}
private void sendBeforeTextChanged(TextWatcher[] watchers, int start, int before, int after) {
int n = watchers.length;
mTextWatcherDepth++;
for (int i = 0; i < n; i++) {
watchers[i].beforeTextChanged(this, start, before, after);
}
mTextWatcherDepth--;
}
private void sendTextChanged(TextWatcher[] watchers, int start, int before, int after) {
int n = watchers.length;
mTextWatcherDepth++;
for (int i = 0; i < n; i++) {
watchers[i].onTextChanged(this, start, before, after);
}
mTextWatcherDepth--;
}
private void sendAfterTextChanged(TextWatcher[] watchers) {
int n = watchers.length;
mTextWatcherDepth++;
for (int i = 0; i < n; i++) {
watchers[i].afterTextChanged(this);
}
mTextWatcherDepth--;
}
private void sendSpanAdded(Object what, int start, int end) {
SpanWatcher[] recip = getSpans(start, end, SpanWatcher.class);
int n = recip.length;
for (int i = 0; i < n; i++) {
recip[i].onSpanAdded(this, what, start, end);
}
}
private void sendSpanRemoved(Object what, int start, int end) {
SpanWatcher[] recip = getSpans(start, end, SpanWatcher.class);
int n = recip.length;
for (int i = 0; i < n; i++) {
recip[i].onSpanRemoved(this, what, start, end);
}
}
private void sendSpanChanged(Object what, int oldStart, int oldEnd, int start, int end) {
// The bounds of a possible SpanWatcher are guaranteed to be set before this method is
// called, so that the order of the span does not affect this broadcast.
SpanWatcher[] spanWatchers = getSpans(Math.min(oldStart, start),
Math.min(Math.max(oldEnd, end), length()), SpanWatcher.class);
int n = spanWatchers.length;
for (int i = 0; i < n; i++) {
spanWatchers[i].onSpanChanged(this, what, oldStart, oldEnd, start, end);
}
}
private static String region(int start, int end) {
return "(" + start + " ... " + end + ")";
}
private void checkRange(final String operation, int start, int end) {
if (end < start) {
throw new IndexOutOfBoundsException(operation + " " +
region(start, end) + " has end before start");
}
int len = length();
if (start > len || end > len) {
throw new IndexOutOfBoundsException(operation + " " +
region(start, end) + " ends beyond length " + len);
}
if (start < 0 || end < 0) {
throw new IndexOutOfBoundsException(operation + " " +
region(start, end) + " starts before 0");
}
}
/*
private boolean isprint(char c) { // XXX
if (c >= ' ' && c <= '~')
return true;
else
return false;
}
private static final int startFlag(int flag) {
return (flag >> 4) & 0x0F;
}
private static final int endFlag(int flag) {
return flag & 0x0F;
}
public void dump() { // XXX
for (int i = 0; i < mGapStart; i++) {
System.out.print('|');
System.out.print(' ');
System.out.print(isprint(mText[i]) ? mText[i] : '.');
System.out.print(' ');
}
for (int i = mGapStart; i < mGapStart + mGapLength; i++) {
System.out.print('|');
System.out.print('(');
System.out.print(isprint(mText[i]) ? mText[i] : '.');
System.out.print(')');
}
for (int i = mGapStart + mGapLength; i < mText.length; i++) {
System.out.print('|');
System.out.print(' ');
System.out.print(isprint(mText[i]) ? mText[i] : '.');
System.out.print(' ');
}
System.out.print('\n');
for (int i = 0; i < mText.length + 1; i++) {
int found = 0;
int wfound = 0;
for (int j = 0; j < mSpanCount; j++) {
if (mSpanStarts[j] == i) {
found = 1;
wfound = j;
break;
}
if (mSpanEnds[j] == i) {
found = 2;
wfound = j;
break;
}
}
if (found == 1) {
if (startFlag(mSpanFlags[wfound]) == MARK)
System.out.print("( ");
if (startFlag(mSpanFlags[wfound]) == PARAGRAPH)
System.out.print("< ");
else
System.out.print("[ ");
} else if (found == 2) {
if (endFlag(mSpanFlags[wfound]) == POINT)
System.out.print(") ");
if (endFlag(mSpanFlags[wfound]) == PARAGRAPH)
System.out.print("> ");
else
System.out.print("] ");
} else {
System.out.print(" ");
}
}
System.out.print("\n");
}
*/
/**
* Don't call this yourself -- exists for Canvas to use internally.
* {@hide}
*/
@Override
public void drawText(BaseCanvas c, int start, int end, float x, float y, Paint p) {
checkRange("drawText", start, end);
if (end <= mGapStart) {
c.drawText(mText, start, end - start, x, y, p);
} else if (start >= mGapStart) {
c.drawText(mText, start + mGapLength, end - start, x, y, p);
} else {
char[] buf = TextUtils.obtain(end - start);
getChars(start, end, buf, 0);
c.drawText(buf, 0, end - start, x, y, p);
TextUtils.recycle(buf);
}
}
/**
* Don't call this yourself -- exists for Canvas to use internally.
* {@hide}
*/
@Override
public void drawTextRun(BaseCanvas c, int start, int end, int contextStart, int contextEnd,
float x, float y, boolean isRtl, Paint p) {
checkRange("drawTextRun", start, end);
int contextLen = contextEnd - contextStart;
int len = end - start;
if (contextEnd <= mGapStart) {
c.drawTextRun(mText, start, len, contextStart, contextLen, x, y, isRtl, p);
} else if (contextStart >= mGapStart) {
c.drawTextRun(mText, start + mGapLength, len, contextStart + mGapLength,
contextLen, x, y, isRtl, p);
} else {
char[] buf = TextUtils.obtain(contextLen);
getChars(contextStart, contextEnd, buf, 0);
c.drawTextRun(buf, start - contextStart, len, 0, contextLen, x, y, isRtl, p);
TextUtils.recycle(buf);
}
}
/**
* Don't call this yourself -- exists for Paint to use internally.
* {@hide}
*/
public float measureText(int start, int end, Paint p) {
checkRange("measureText", start, end);
float ret;
if (end <= mGapStart) {
ret = p.measureText(mText, start, end - start);
} else if (start >= mGapStart) {
ret = p.measureText(mText, start + mGapLength, end - start);
} else {
char[] buf = TextUtils.obtain(end - start);
getChars(start, end, buf, 0);
ret = p.measureText(buf, 0, end - start);
TextUtils.recycle(buf);
}
return ret;
}
/**
* Don't call this yourself -- exists for Paint to use internally.
* {@hide}
*/
public int getTextWidths(int start, int end, float[] widths, Paint p) {
checkRange("getTextWidths", start, end);
int ret;
if (end <= mGapStart) {
ret = p.getTextWidths(mText, start, end - start, widths);
} else if (start >= mGapStart) {
ret = p.getTextWidths(mText, start + mGapLength, end - start, widths);
} else {
char[] buf = TextUtils.obtain(end - start);
getChars(start, end, buf, 0);
ret = p.getTextWidths(buf, 0, end - start, widths);
TextUtils.recycle(buf);
}
return ret;
}
/**
* Don't call this yourself -- exists for Paint to use internally.
* {@hide}
*/
public float getTextRunAdvances(int start, int end, int contextStart, int contextEnd, boolean isRtl,
float[] advances, int advancesPos, Paint p) {
float ret;
int contextLen = contextEnd - contextStart;
int len = end - start;
if (end <= mGapStart) {
ret = p.getTextRunAdvances(mText, start, len, contextStart, contextLen,
isRtl, advances, advancesPos);
} else if (start >= mGapStart) {
ret = p.getTextRunAdvances(mText, start + mGapLength, len,
contextStart + mGapLength, contextLen, isRtl, advances, advancesPos);
} else {
char[] buf = TextUtils.obtain(contextLen);
getChars(contextStart, contextEnd, buf, 0);
ret = p.getTextRunAdvances(buf, start - contextStart, len,
0, contextLen, isRtl, advances, advancesPos);
TextUtils.recycle(buf);
}
return ret;
}
/**
* Returns the next cursor position in the run. This avoids placing the cursor between
* surrogates, between characters that form conjuncts, between base characters and combining
* marks, or within a reordering cluster.
*
* <p>The context is the shaping context for cursor movement, generally the bounds of the metric
* span enclosing the cursor in the direction of movement.
* <code>contextStart</code>, <code>contextEnd</code> and <code>offset</code> are relative to
* the start of the string.</p>
*
* <p>If cursorOpt is CURSOR_AT and the offset is not a valid cursor position,
* this returns -1. Otherwise this will never return a value before contextStart or after
* contextEnd.</p>
*
* @param contextStart the start index of the context
* @param contextEnd the (non-inclusive) end index of the context
* @param dir 1 if the run is RTL, otherwise 0
* @param offset the cursor position to move from
* @param cursorOpt how to move the cursor, one of CURSOR_AFTER,
* CURSOR_AT_OR_AFTER, CURSOR_BEFORE,
* CURSOR_AT_OR_BEFORE, or CURSOR_AT
* @param p the Paint object that is requesting this information
* @return the offset of the next position, or -1
* @deprecated This is an internal method, refrain from using it in your code
*/
@Deprecated
public int getTextRunCursor(int contextStart, int contextEnd, int dir, int offset,
int cursorOpt, Paint p) {
return getTextRunCursor(contextStart, contextEnd, dir == 1, offset, cursorOpt, p);
}
/** @hide */
@Override
public int getTextRunCursor(int contextStart, int contextEnd, boolean isRtl, int offset,
int cursorOpt, Paint p) {
int ret;
int contextLen = contextEnd - contextStart;
if (contextEnd <= mGapStart) {
ret = p.getTextRunCursor(mText, contextStart, contextLen,
isRtl, offset, cursorOpt);
} else if (contextStart >= mGapStart) {
ret = p.getTextRunCursor(mText, contextStart + mGapLength, contextLen,
isRtl, offset + mGapLength, cursorOpt) - mGapLength;
} else {
char[] buf = TextUtils.obtain(contextLen);
getChars(contextStart, contextEnd, buf, 0);
ret = p.getTextRunCursor(buf, 0, contextLen,
isRtl, offset - contextStart, cursorOpt) + contextStart;
TextUtils.recycle(buf);
}
return ret;
}
// Documentation from interface
public void setFilters(InputFilter[] filters) {
if (filters == null) {
throw new IllegalArgumentException();
}
mFilters = filters;
}
// Documentation from interface
public InputFilter[] getFilters() {
return mFilters;
}
// Same as SpannableStringInternal
@Override
public boolean equals(Object o) {
if (o instanceof Spanned &&
toString().equals(o.toString())) {
final Spanned other = (Spanned) o;
// Check span data
final Object[] otherSpans = other.getSpans(0, other.length(), Object.class);
final Object[] thisSpans = getSpans(0, length(), Object.class);
if (mSpanCount == otherSpans.length) {
for (int i = 0; i < mSpanCount; ++i) {
final Object thisSpan = thisSpans[i];
final Object otherSpan = otherSpans[i];
if (thisSpan == this) {
if (other != otherSpan ||
getSpanStart(thisSpan) != other.getSpanStart(otherSpan) ||
getSpanEnd(thisSpan) != other.getSpanEnd(otherSpan) ||
getSpanFlags(thisSpan) != other.getSpanFlags(otherSpan)) {
return false;
}
} else if (!thisSpan.equals(otherSpan) ||
getSpanStart(thisSpan) != other.getSpanStart(otherSpan) ||
getSpanEnd(thisSpan) != other.getSpanEnd(otherSpan) ||
getSpanFlags(thisSpan) != other.getSpanFlags(otherSpan)) {
return false;
}
}
return true;
}
}
return false;
}
// Same as SpannableStringInternal
@Override
public int hashCode() {
int hash = toString().hashCode();
hash = hash * 31 + mSpanCount;
for (int i = 0; i < mSpanCount; ++i) {
Object span = mSpans[i];
if (span != this) {
hash = hash * 31 + span.hashCode();
}
hash = hash * 31 + getSpanStart(span);
hash = hash * 31 + getSpanEnd(span);
hash = hash * 31 + getSpanFlags(span);
}
return hash;
}
// Primitives for treating span list as binary tree
// The spans (along with start and end offsets and flags) are stored in linear arrays sorted
// by start offset. For fast searching, there is a binary search structure imposed over these
// arrays. This structure is inorder traversal of a perfect binary tree, a slightly unusual
// but advantageous approach.
// The value-containing nodes are indexed 0 <= i < n (where n = mSpanCount), thus preserving
// logic that accesses the values as a contiguous array. Other balanced binary tree approaches
// (such as a complete binary tree) would require some shuffling of node indices.
// Basic properties of this structure: For a perfect binary tree of height m:
// The tree has 2^(m+1) - 1 total nodes.
// The root of the tree has index 2^m - 1.
// All leaf nodes have even index, all interior nodes odd.
// The height of a node of index i is the number of trailing ones in i's binary representation.
// The left child of a node i of height h is i - 2^(h - 1).
// The right child of a node i of height h is i + 2^(h - 1).
// Note that for arbitrary n, interior nodes of this tree may be >= n. Thus, the general
// structure of a recursive traversal of node i is:
// * traverse left child if i is an interior node
// * process i if i < n
// * traverse right child if i is an interior node and i < n
private int treeRoot() {
return Integer.highestOneBit(mSpanCount) - 1;
}
// (i+1) & ~i is equal to 2^(the number of trailing ones in i)
private static int leftChild(int i) {
return i - (((i + 1) & ~i) >> 1);
}
private static int rightChild(int i) {
return i + (((i + 1) & ~i) >> 1);
}
// The span arrays are also augmented by an mSpanMax[] array that represents an interval tree
// over the binary tree structure described above. For each node, the mSpanMax[] array contains
// the maximum value of mSpanEnds of that node and its descendants. Thus, traversals can
// easily reject subtrees that contain no spans overlapping the area of interest.
// Note that mSpanMax[] also has a valid valuefor interior nodes of index >= n, but which have
// descendants of index < n. In these cases, it simply represents the maximum span end of its
// descendants. This is a consequence of the perfect binary tree structure.
private int calcMax(int i) {
int max = 0;
if ((i & 1) != 0) {
// internal tree node
max = calcMax(leftChild(i));
}
if (i < mSpanCount) {
max = Math.max(max, mSpanEnds[i]);
if ((i & 1) != 0) {
max = Math.max(max, calcMax(rightChild(i)));
}
}
mSpanMax[i] = max;
return max;
}
// restores binary interval tree invariants after any mutation of span structure
private void restoreInvariants() {
if (mSpanCount == 0) return;
// invariant 1: span starts are nondecreasing
// This is a simple insertion sort because we expect it to be mostly sorted.
for (int i = 1; i < mSpanCount; i++) {
if (mSpanStarts[i] < mSpanStarts[i - 1]) {
Object span = mSpans[i];
int start = mSpanStarts[i];
int end = mSpanEnds[i];
int flags = mSpanFlags[i];
int insertionOrder = mSpanOrder[i];
int j = i;
do {
mSpans[j] = mSpans[j - 1];
mSpanStarts[j] = mSpanStarts[j - 1];
mSpanEnds[j] = mSpanEnds[j - 1];
mSpanFlags[j] = mSpanFlags[j - 1];
mSpanOrder[j] = mSpanOrder[j - 1];
j--;
} while (j > 0 && start < mSpanStarts[j - 1]);
mSpans[j] = span;
mSpanStarts[j] = start;
mSpanEnds[j] = end;
mSpanFlags[j] = flags;
mSpanOrder[j] = insertionOrder;
invalidateIndex(j);
}
}
// invariant 2: max is max span end for each node and its descendants
calcMax(treeRoot());
// invariant 3: mIndexOfSpan maps spans back to indices
if (mIndexOfSpan == null) {
mIndexOfSpan = new IdentityHashMap<Object, Integer>();
}
for (int i = mLowWaterMark; i < mSpanCount; i++) {
Integer existing = mIndexOfSpan.get(mSpans[i]);
if (existing == null || existing != i) {
mIndexOfSpan.put(mSpans[i], i);
}
}
mLowWaterMark = Integer.MAX_VALUE;
}
// Call this on any update to mSpans[], so that mIndexOfSpan can be updated
private void invalidateIndex(int i) {
mLowWaterMark = Math.min(i, mLowWaterMark);
}
private static final InputFilter[] NO_FILTERS = new InputFilter[0];
@GuardedBy("sCachedIntBuffer")
private static final int[][] sCachedIntBuffer = new int[6][0];
private InputFilter[] mFilters = NO_FILTERS;
@UnsupportedAppUsage
private char[] mText;
@UnsupportedAppUsage
private int mGapStart;
@UnsupportedAppUsage
private int mGapLength;
@UnsupportedAppUsage
private Object[] mSpans;
@UnsupportedAppUsage
private int[] mSpanStarts;
@UnsupportedAppUsage
private int[] mSpanEnds;
private int[] mSpanMax; // see calcMax() for an explanation of what this array stores
@UnsupportedAppUsage
private int[] mSpanFlags;
private int[] mSpanOrder; // store the order of span insertion
private int mSpanInsertCount; // counter for the span insertion
@UnsupportedAppUsage
private int mSpanCount;
private IdentityHashMap<Object, Integer> mIndexOfSpan;
private int mLowWaterMark; // indices below this have not been touched
// TextWatcher callbacks may trigger changes that trigger more callbacks. This keeps track of
// how deep the callbacks go.
private int mTextWatcherDepth;
// TODO These value are tightly related to the public SPAN_MARK/POINT values in {@link Spanned}
private static final int MARK = 1;
private static final int POINT = 2;
private static final int PARAGRAPH = 3;
private static final int START_MASK = 0xF0;
private static final int END_MASK = 0x0F;
private static final int START_SHIFT = 4;
// These bits are not (currently) used by SPANNED flags
private static final int SPAN_ADDED = 0x800;
private static final int SPAN_START_AT_START = 0x1000;
private static final int SPAN_START_AT_END = 0x2000;
private static final int SPAN_END_AT_START = 0x4000;
private static final int SPAN_END_AT_END = 0x8000;
private static final int SPAN_START_END_MASK = 0xF000;
}
|