1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util;
/**
* Performs spline interpolation given a set of control points.
* @hide
*/
public abstract class Spline {
/**
* Interpolates the value of Y = f(X) for given X.
* Clamps X to the domain of the spline.
*
* @param x The X value.
* @return The interpolated Y = f(X) value.
*/
public abstract float interpolate(float x);
/**
* Creates an appropriate spline based on the properties of the control points.
*
* If the control points are monotonic then the resulting spline will preserve that and
* otherwise optimize for error bounds.
*/
public static Spline createSpline(float[] x, float[] y) {
if (!isStrictlyIncreasing(x)) {
throw new IllegalArgumentException("The control points must all have strictly "
+ "increasing X values.");
}
if (isMonotonic(y)) {
return createMonotoneCubicSpline(x, y);
} else {
return createLinearSpline(x, y);
}
}
/**
* Creates a monotone cubic spline from a given set of control points.
*
* The spline is guaranteed to pass through each control point exactly.
* Moreover, assuming the control points are monotonic (Y is non-decreasing or
* non-increasing) then the interpolated values will also be monotonic.
*
* This function uses the Fritsch-Carlson method for computing the spline parameters.
* http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
*
* @param x The X component of the control points, strictly increasing.
* @param y The Y component of the control points, monotonic.
* @return
*
* @throws IllegalArgumentException if the X or Y arrays are null, have
* different lengths or have fewer than 2 values.
* @throws IllegalArgumentException if the control points are not monotonic.
*/
public static Spline createMonotoneCubicSpline(float[] x, float[] y) {
return new MonotoneCubicSpline(x, y);
}
/**
* Creates a linear spline from a given set of control points.
*
* Like a monotone cubic spline, the interpolated curve will be monotonic if the control points
* are monotonic.
*
* @param x The X component of the control points, strictly increasing.
* @param y The Y component of the control points.
* @return
*
* @throws IllegalArgumentException if the X or Y arrays are null, have
* different lengths or have fewer than 2 values.
* @throws IllegalArgumentException if the X components of the control points are not strictly
* increasing.
*/
public static Spline createLinearSpline(float[] x, float[] y) {
return new LinearSpline(x, y);
}
private static boolean isStrictlyIncreasing(float[] x) {
if (x == null || x.length < 2) {
throw new IllegalArgumentException("There must be at least two control points.");
}
float prev = x[0];
for (int i = 1; i < x.length; i++) {
float curr = x[i];
if (curr <= prev) {
return false;
}
prev = curr;
}
return true;
}
private static boolean isMonotonic(float[] x) {
if (x == null || x.length < 2) {
throw new IllegalArgumentException("There must be at least two control points.");
}
float prev = x[0];
for (int i = 1; i < x.length; i++) {
float curr = x[i];
if (curr < prev) {
return false;
}
prev = curr;
}
return true;
}
public static class MonotoneCubicSpline extends Spline {
private float[] mX;
private float[] mY;
private float[] mM;
public MonotoneCubicSpline(float[] x, float[] y) {
if (x == null || y == null || x.length != y.length || x.length < 2) {
throw new IllegalArgumentException("There must be at least two control "
+ "points and the arrays must be of equal length.");
}
final int n = x.length;
float[] d = new float[n - 1]; // could optimize this out
float[] m = new float[n];
// Compute slopes of secant lines between successive points.
for (int i = 0; i < n - 1; i++) {
float h = x[i + 1] - x[i];
if (h <= 0f) {
throw new IllegalArgumentException("The control points must all "
+ "have strictly increasing X values.");
}
d[i] = (y[i + 1] - y[i]) / h;
}
// Initialize the tangents as the average of the secants.
m[0] = d[0];
for (int i = 1; i < n - 1; i++) {
m[i] = (d[i - 1] + d[i]) * 0.5f;
}
m[n - 1] = d[n - 2];
// Update the tangents to preserve monotonicity.
for (int i = 0; i < n - 1; i++) {
if (d[i] == 0f) { // successive Y values are equal
m[i] = 0f;
m[i + 1] = 0f;
} else {
float a = m[i] / d[i];
float b = m[i + 1] / d[i];
if (a < 0f || b < 0f) {
throw new IllegalArgumentException("The control points must have "
+ "monotonic Y values.");
}
float h = (float) Math.hypot(a, b);
if (h > 3f) {
float t = 3f / h;
m[i] *= t;
m[i + 1] *= t;
}
}
}
mX = x;
mY = y;
mM = m;
}
@Override
public float interpolate(float x) {
// Handle the boundary cases.
final int n = mX.length;
if (Float.isNaN(x)) {
return x;
}
if (x <= mX[0]) {
return mY[0];
}
if (x >= mX[n - 1]) {
return mY[n - 1];
}
// Find the index 'i' of the last point with smaller X.
// We know this will be within the spline due to the boundary tests.
int i = 0;
while (x >= mX[i + 1]) {
i += 1;
if (x == mX[i]) {
return mY[i];
}
}
// Perform cubic Hermite spline interpolation.
float h = mX[i + 1] - mX[i];
float t = (x - mX[i]) / h;
return (mY[i] * (1 + 2 * t) + h * mM[i] * t) * (1 - t) * (1 - t)
+ (mY[i + 1] * (3 - 2 * t) + h * mM[i + 1] * (t - 1)) * t * t;
}
// For debugging.
@Override
public String toString() {
StringBuilder str = new StringBuilder();
final int n = mX.length;
str.append("MonotoneCubicSpline{[");
for (int i = 0; i < n; i++) {
if (i != 0) {
str.append(", ");
}
str.append("(").append(mX[i]);
str.append(", ").append(mY[i]);
str.append(": ").append(mM[i]).append(")");
}
str.append("]}");
return str.toString();
}
}
public static class LinearSpline extends Spline {
private final float[] mX;
private final float[] mY;
private final float[] mM;
public LinearSpline(float[] x, float[] y) {
if (x == null || y == null || x.length != y.length || x.length < 2) {
throw new IllegalArgumentException("There must be at least two control "
+ "points and the arrays must be of equal length.");
}
final int N = x.length;
mM = new float[N-1];
for (int i = 0; i < N-1; i++) {
mM[i] = (y[i+1] - y[i]) / (x[i+1] - x[i]);
}
mX = x;
mY = y;
}
@Override
public float interpolate(float x) {
// Handle the boundary cases.
final int n = mX.length;
if (Float.isNaN(x)) {
return x;
}
if (x <= mX[0]) {
return mY[0];
}
if (x >= mX[n - 1]) {
return mY[n - 1];
}
// Find the index 'i' of the last point with smaller X.
// We know this will be within the spline due to the boundary tests.
int i = 0;
while (x >= mX[i + 1]) {
i += 1;
if (x == mX[i]) {
return mY[i];
}
}
return mY[i] + mM[i] * (x - mX[i]);
}
@Override
public String toString() {
StringBuilder str = new StringBuilder();
final int n = mX.length;
str.append("LinearSpline{[");
for (int i = 0; i < n; i++) {
if (i != 0) {
str.append(", ");
}
str.append("(").append(mX[i]);
str.append(", ").append(mY[i]);
if (i < n-1) {
str.append(": ").append(mM[i]);
}
str.append(")");
}
str.append("]}");
return str.toString();
}
}
}
|