1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compile/Image.h"
#include <sstream>
#include <string>
#include <vector>
#include "androidfw/ResourceTypes.h"
#include "androidfw/StringPiece.h"
#include "util/Util.h"
using android::StringPiece;
namespace aapt {
// Colors in the format 0xAARRGGBB (the way 9-patch expects it).
constexpr static const uint32_t kColorOpaqueWhite = 0xffffffffu;
constexpr static const uint32_t kColorOpaqueBlack = 0xff000000u;
constexpr static const uint32_t kColorOpaqueRed = 0xffff0000u;
constexpr static const uint32_t kPrimaryColor = kColorOpaqueBlack;
constexpr static const uint32_t kSecondaryColor = kColorOpaqueRed;
/**
* Returns the alpha value encoded in the 0xAARRGBB encoded pixel.
*/
static uint32_t get_alpha(uint32_t color);
/**
* Determines whether a color on an ImageLine is valid.
* A 9patch image may use a transparent color as neutral,
* or a fully opaque white color as neutral, based on the
* pixel color at (0,0) of the image. One or the other is fine,
* but we need to ensure consistency throughout the image.
*/
class ColorValidator {
public:
virtual ~ColorValidator() = default;
/**
* Returns true if the color specified is a neutral color
* (no padding, stretching, or optical bounds).
*/
virtual bool IsNeutralColor(uint32_t color) const = 0;
/**
* Returns true if the color is either a neutral color
* or one denoting padding, stretching, or optical bounds.
*/
bool IsValidColor(uint32_t color) const {
switch (color) {
case kPrimaryColor:
case kSecondaryColor:
return true;
}
return IsNeutralColor(color);
}
};
// Walks an ImageLine and records Ranges of primary and secondary colors.
// The primary color is black and is used to denote a padding or stretching
// range,
// depending on which border we're iterating over.
// The secondary color is red and is used to denote optical bounds.
//
// An ImageLine is a templated-interface that would look something like this if
// it
// were polymorphic:
//
// class ImageLine {
// public:
// virtual int32_t GetLength() const = 0;
// virtual uint32_t GetColor(int32_t idx) const = 0;
// };
//
template <typename ImageLine>
static bool FillRanges(const ImageLine* image_line,
const ColorValidator* color_validator,
std::vector<Range>* primary_ranges,
std::vector<Range>* secondary_ranges,
std::string* out_err) {
const int32_t length = image_line->GetLength();
uint32_t last_color = 0xffffffffu;
for (int32_t idx = 1; idx < length - 1; idx++) {
const uint32_t color = image_line->GetColor(idx);
if (!color_validator->IsValidColor(color)) {
*out_err = "found an invalid color";
return false;
}
if (color != last_color) {
// We are ending a range. Which range?
// note: encode the x offset without the final 1 pixel border.
if (last_color == kPrimaryColor) {
primary_ranges->back().end = idx - 1;
} else if (last_color == kSecondaryColor) {
secondary_ranges->back().end = idx - 1;
}
// We are starting a range. Which range?
// note: encode the x offset without the final 1 pixel border.
if (color == kPrimaryColor) {
primary_ranges->push_back(Range(idx - 1, length - 2));
} else if (color == kSecondaryColor) {
secondary_ranges->push_back(Range(idx - 1, length - 2));
}
last_color = color;
}
}
return true;
}
/**
* Iterates over a row in an image. Implements the templated ImageLine
* interface.
*/
class HorizontalImageLine {
public:
explicit HorizontalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset,
int32_t length)
: rows_(rows), xoffset_(xoffset), yoffset_(yoffset), length_(length) {}
inline int32_t GetLength() const { return length_; }
inline uint32_t GetColor(int32_t idx) const {
return NinePatch::PackRGBA(rows_[yoffset_] + (idx + xoffset_) * 4);
}
private:
uint8_t** rows_;
int32_t xoffset_, yoffset_, length_;
DISALLOW_COPY_AND_ASSIGN(HorizontalImageLine);
};
/**
* Iterates over a column in an image. Implements the templated ImageLine
* interface.
*/
class VerticalImageLine {
public:
explicit VerticalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset,
int32_t length)
: rows_(rows), xoffset_(xoffset), yoffset_(yoffset), length_(length) {}
inline int32_t GetLength() const { return length_; }
inline uint32_t GetColor(int32_t idx) const {
return NinePatch::PackRGBA(rows_[yoffset_ + idx] + (xoffset_ * 4));
}
private:
uint8_t** rows_;
int32_t xoffset_, yoffset_, length_;
DISALLOW_COPY_AND_ASSIGN(VerticalImageLine);
};
class DiagonalImageLine {
public:
explicit DiagonalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset,
int32_t xstep, int32_t ystep, int32_t length)
: rows_(rows),
xoffset_(xoffset),
yoffset_(yoffset),
xstep_(xstep),
ystep_(ystep),
length_(length) {}
inline int32_t GetLength() const { return length_; }
inline uint32_t GetColor(int32_t idx) const {
return NinePatch::PackRGBA(rows_[yoffset_ + (idx * ystep_)] +
((idx + xoffset_) * xstep_) * 4);
}
private:
uint8_t** rows_;
int32_t xoffset_, yoffset_, xstep_, ystep_, length_;
DISALLOW_COPY_AND_ASSIGN(DiagonalImageLine);
};
class TransparentNeutralColorValidator : public ColorValidator {
public:
bool IsNeutralColor(uint32_t color) const override {
return get_alpha(color) == 0;
}
};
class WhiteNeutralColorValidator : public ColorValidator {
public:
bool IsNeutralColor(uint32_t color) const override {
return color == kColorOpaqueWhite;
}
};
inline static uint32_t get_alpha(uint32_t color) {
return (color & 0xff000000u) >> 24;
}
static bool PopulateBounds(const std::vector<Range>& padding,
const std::vector<Range>& layout_bounds,
const std::vector<Range>& stretch_regions,
const int32_t length, int32_t* padding_start,
int32_t* padding_end, int32_t* layout_start,
int32_t* layout_end, const StringPiece& edge_name,
std::string* out_err) {
if (padding.size() > 1) {
std::stringstream err_stream;
err_stream << "too many padding sections on " << edge_name << " border";
*out_err = err_stream.str();
return false;
}
*padding_start = 0;
*padding_end = 0;
if (!padding.empty()) {
const Range& range = padding.front();
*padding_start = range.start;
*padding_end = length - range.end;
} else if (!stretch_regions.empty()) {
// No padding was defined. Compute the padding from the first and last
// stretch regions.
*padding_start = stretch_regions.front().start;
*padding_end = length - stretch_regions.back().end;
}
if (layout_bounds.size() > 2) {
std::stringstream err_stream;
err_stream << "too many layout bounds sections on " << edge_name
<< " border";
*out_err = err_stream.str();
return false;
}
*layout_start = 0;
*layout_end = 0;
if (layout_bounds.size() >= 1) {
const Range& range = layout_bounds.front();
// If there is only one layout bound segment, it might not start at 0, but
// then it should
// end at length.
if (range.start != 0 && range.end != length) {
std::stringstream err_stream;
err_stream << "layout bounds on " << edge_name
<< " border must start at edge";
*out_err = err_stream.str();
return false;
}
*layout_start = range.end;
if (layout_bounds.size() >= 2) {
const Range& range = layout_bounds.back();
if (range.end != length) {
std::stringstream err_stream;
err_stream << "layout bounds on " << edge_name
<< " border must start at edge";
*out_err = err_stream.str();
return false;
}
*layout_end = length - range.start;
}
}
return true;
}
static int32_t CalculateSegmentCount(const std::vector<Range>& stretch_regions,
int32_t length) {
if (stretch_regions.size() == 0) {
return 0;
}
const bool start_is_fixed = stretch_regions.front().start != 0;
const bool end_is_fixed = stretch_regions.back().end != length;
int32_t modifier = 0;
if (start_is_fixed && end_is_fixed) {
modifier = 1;
} else if (!start_is_fixed && !end_is_fixed) {
modifier = -1;
}
return static_cast<int32_t>(stretch_regions.size()) * 2 + modifier;
}
static uint32_t GetRegionColor(uint8_t** rows, const Bounds& region) {
// Sample the first pixel to compare against.
const uint32_t expected_color =
NinePatch::PackRGBA(rows[region.top] + region.left * 4);
for (int32_t y = region.top; y < region.bottom; y++) {
const uint8_t* row = rows[y];
for (int32_t x = region.left; x < region.right; x++) {
const uint32_t color = NinePatch::PackRGBA(row + x * 4);
if (get_alpha(color) == 0) {
// The color is transparent.
// If the expectedColor is not transparent, NO_COLOR.
if (get_alpha(expected_color) != 0) {
return android::Res_png_9patch::NO_COLOR;
}
} else if (color != expected_color) {
return android::Res_png_9patch::NO_COLOR;
}
}
}
if (get_alpha(expected_color) == 0) {
return android::Res_png_9patch::TRANSPARENT_COLOR;
}
return expected_color;
}
// Fills out_colors with each 9-patch section's color. If the whole section is
// transparent,
// it gets the special TRANSPARENT color. If the whole section is the same
// color, it is assigned
// that color. Otherwise it gets the special NO_COLOR color.
//
// Note that the rows contain the 9-patch 1px border, and the indices in the
// stretch regions are
// already offset to exclude the border. This means that each time the rows are
// accessed,
// the indices must be offset by 1.
//
// width and height also include the 9-patch 1px border.
static void CalculateRegionColors(
uint8_t** rows, const std::vector<Range>& horizontal_stretch_regions,
const std::vector<Range>& vertical_stretch_regions, const int32_t width,
const int32_t height, std::vector<uint32_t>* out_colors) {
int32_t next_top = 0;
Bounds bounds;
auto row_iter = vertical_stretch_regions.begin();
while (next_top != height) {
if (row_iter != vertical_stretch_regions.end()) {
if (next_top != row_iter->start) {
// This is a fixed segment.
// Offset the bounds by 1 to accommodate the border.
bounds.top = next_top + 1;
bounds.bottom = row_iter->start + 1;
next_top = row_iter->start;
} else {
// This is a stretchy segment.
// Offset the bounds by 1 to accommodate the border.
bounds.top = row_iter->start + 1;
bounds.bottom = row_iter->end + 1;
next_top = row_iter->end;
++row_iter;
}
} else {
// This is the end, fixed section.
// Offset the bounds by 1 to accommodate the border.
bounds.top = next_top + 1;
bounds.bottom = height + 1;
next_top = height;
}
int32_t next_left = 0;
auto col_iter = horizontal_stretch_regions.begin();
while (next_left != width) {
if (col_iter != horizontal_stretch_regions.end()) {
if (next_left != col_iter->start) {
// This is a fixed segment.
// Offset the bounds by 1 to accommodate the border.
bounds.left = next_left + 1;
bounds.right = col_iter->start + 1;
next_left = col_iter->start;
} else {
// This is a stretchy segment.
// Offset the bounds by 1 to accommodate the border.
bounds.left = col_iter->start + 1;
bounds.right = col_iter->end + 1;
next_left = col_iter->end;
++col_iter;
}
} else {
// This is the end, fixed section.
// Offset the bounds by 1 to accommodate the border.
bounds.left = next_left + 1;
bounds.right = width + 1;
next_left = width;
}
out_colors->push_back(GetRegionColor(rows, bounds));
}
}
}
// Calculates the insets of a row/column of pixels based on where the largest
// alpha value begins
// (on both sides).
template <typename ImageLine>
static void FindOutlineInsets(const ImageLine* image_line, int32_t* out_start,
int32_t* out_end) {
*out_start = 0;
*out_end = 0;
const int32_t length = image_line->GetLength();
if (length < 3) {
return;
}
// If the length is odd, we want both sides to process the center pixel,
// so we use two different midpoints (to account for < and <= in the different
// loops).
const int32_t mid2 = length / 2;
const int32_t mid1 = mid2 + (length % 2);
uint32_t max_alpha = 0;
for (int32_t i = 0; i < mid1 && max_alpha != 0xff; i++) {
uint32_t alpha = get_alpha(image_line->GetColor(i));
if (alpha > max_alpha) {
max_alpha = alpha;
*out_start = i;
}
}
max_alpha = 0;
for (int32_t i = length - 1; i >= mid2 && max_alpha != 0xff; i--) {
uint32_t alpha = get_alpha(image_line->GetColor(i));
if (alpha > max_alpha) {
max_alpha = alpha;
*out_end = length - (i + 1);
}
}
return;
}
template <typename ImageLine>
static uint32_t FindMaxAlpha(const ImageLine* image_line) {
const int32_t length = image_line->GetLength();
uint32_t max_alpha = 0;
for (int32_t idx = 0; idx < length && max_alpha != 0xff; idx++) {
uint32_t alpha = get_alpha(image_line->GetColor(idx));
if (alpha > max_alpha) {
max_alpha = alpha;
}
}
return max_alpha;
}
// Pack the pixels in as 0xAARRGGBB (as 9-patch expects it).
uint32_t NinePatch::PackRGBA(const uint8_t* pixel) {
return (pixel[3] << 24) | (pixel[0] << 16) | (pixel[1] << 8) | pixel[2];
}
std::unique_ptr<NinePatch> NinePatch::Create(uint8_t** rows,
const int32_t width,
const int32_t height,
std::string* out_err) {
if (width < 3 || height < 3) {
*out_err = "image must be at least 3x3 (1x1 image with 1 pixel border)";
return {};
}
std::vector<Range> horizontal_padding;
std::vector<Range> horizontal_layout_bounds;
std::vector<Range> vertical_padding;
std::vector<Range> vertical_layout_bounds;
std::vector<Range> unexpected_ranges;
std::unique_ptr<ColorValidator> color_validator;
if (rows[0][3] == 0) {
color_validator = util::make_unique<TransparentNeutralColorValidator>();
} else if (PackRGBA(rows[0]) == kColorOpaqueWhite) {
color_validator = util::make_unique<WhiteNeutralColorValidator>();
} else {
*out_err =
"top-left corner pixel must be either opaque white or transparent";
return {};
}
// Private constructor, can't use make_unique.
auto nine_patch = std::unique_ptr<NinePatch>(new NinePatch());
HorizontalImageLine top_row(rows, 0, 0, width);
if (!FillRanges(&top_row, color_validator.get(),
&nine_patch->horizontal_stretch_regions, &unexpected_ranges,
out_err)) {
return {};
}
if (!unexpected_ranges.empty()) {
const Range& range = unexpected_ranges[0];
std::stringstream err_stream;
err_stream << "found unexpected optical bounds (red pixel) on top border "
<< "at x=" << range.start + 1;
*out_err = err_stream.str();
return {};
}
VerticalImageLine left_col(rows, 0, 0, height);
if (!FillRanges(&left_col, color_validator.get(),
&nine_patch->vertical_stretch_regions, &unexpected_ranges,
out_err)) {
return {};
}
if (!unexpected_ranges.empty()) {
const Range& range = unexpected_ranges[0];
std::stringstream err_stream;
err_stream << "found unexpected optical bounds (red pixel) on left border "
<< "at y=" << range.start + 1;
return {};
}
HorizontalImageLine bottom_row(rows, 0, height - 1, width);
if (!FillRanges(&bottom_row, color_validator.get(), &horizontal_padding,
&horizontal_layout_bounds, out_err)) {
return {};
}
if (!PopulateBounds(horizontal_padding, horizontal_layout_bounds,
nine_patch->horizontal_stretch_regions, width - 2,
&nine_patch->padding.left, &nine_patch->padding.right,
&nine_patch->layout_bounds.left,
&nine_patch->layout_bounds.right, "bottom", out_err)) {
return {};
}
VerticalImageLine right_col(rows, width - 1, 0, height);
if (!FillRanges(&right_col, color_validator.get(), &vertical_padding,
&vertical_layout_bounds, out_err)) {
return {};
}
if (!PopulateBounds(vertical_padding, vertical_layout_bounds,
nine_patch->vertical_stretch_regions, height - 2,
&nine_patch->padding.top, &nine_patch->padding.bottom,
&nine_patch->layout_bounds.top,
&nine_patch->layout_bounds.bottom, "right", out_err)) {
return {};
}
// Fill the region colors of the 9-patch.
const int32_t num_rows =
CalculateSegmentCount(nine_patch->horizontal_stretch_regions, width - 2);
const int32_t num_cols =
CalculateSegmentCount(nine_patch->vertical_stretch_regions, height - 2);
if ((int64_t)num_rows * (int64_t)num_cols > 0x7f) {
*out_err = "too many regions in 9-patch";
return {};
}
nine_patch->region_colors.reserve(num_rows * num_cols);
CalculateRegionColors(rows, nine_patch->horizontal_stretch_regions,
nine_patch->vertical_stretch_regions, width - 2,
height - 2, &nine_patch->region_colors);
// Compute the outline based on opacity.
// Find left and right extent of 9-patch content on center row.
HorizontalImageLine mid_row(rows, 1, height / 2, width - 2);
FindOutlineInsets(&mid_row, &nine_patch->outline.left,
&nine_patch->outline.right);
// Find top and bottom extent of 9-patch content on center column.
VerticalImageLine mid_col(rows, width / 2, 1, height - 2);
FindOutlineInsets(&mid_col, &nine_patch->outline.top,
&nine_patch->outline.bottom);
const int32_t outline_width =
(width - 2) - nine_patch->outline.left - nine_patch->outline.right;
const int32_t outline_height =
(height - 2) - nine_patch->outline.top - nine_patch->outline.bottom;
// Find the largest alpha value within the outline area.
HorizontalImageLine outline_mid_row(
rows, 1 + nine_patch->outline.left,
1 + nine_patch->outline.top + (outline_height / 2), outline_width);
VerticalImageLine outline_mid_col(
rows, 1 + nine_patch->outline.left + (outline_width / 2),
1 + nine_patch->outline.top, outline_height);
nine_patch->outline_alpha =
std::max(FindMaxAlpha(&outline_mid_row), FindMaxAlpha(&outline_mid_col));
// Assuming the image is a round rect, compute the radius by marching
// diagonally from the top left corner towards the center.
DiagonalImageLine diagonal(rows, 1 + nine_patch->outline.left,
1 + nine_patch->outline.top, 1, 1,
std::min(outline_width, outline_height));
int32_t top_left, bottom_right;
FindOutlineInsets(&diagonal, &top_left, &bottom_right);
/* Determine source radius based upon inset:
* sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
* sqrt(2) * r = sqrt(2) * i + r
* (sqrt(2) - 1) * r = sqrt(2) * i
* r = sqrt(2) / (sqrt(2) - 1) * i
*/
nine_patch->outline_radius = 3.4142f * top_left;
return nine_patch;
}
std::unique_ptr<uint8_t[]> NinePatch::SerializeBase(size_t* outLen) const {
android::Res_png_9patch data;
data.numXDivs = static_cast<uint8_t>(horizontal_stretch_regions.size()) * 2;
data.numYDivs = static_cast<uint8_t>(vertical_stretch_regions.size()) * 2;
data.numColors = static_cast<uint8_t>(region_colors.size());
data.paddingLeft = padding.left;
data.paddingRight = padding.right;
data.paddingTop = padding.top;
data.paddingBottom = padding.bottom;
auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[data.serializedSize()]);
android::Res_png_9patch::serialize(
data, (const int32_t*)horizontal_stretch_regions.data(),
(const int32_t*)vertical_stretch_regions.data(), region_colors.data(),
buffer.get());
// Convert to file endianness.
reinterpret_cast<android::Res_png_9patch*>(buffer.get())->deviceToFile();
*outLen = data.serializedSize();
return buffer;
}
std::unique_ptr<uint8_t[]> NinePatch::SerializeLayoutBounds(
size_t* out_len) const {
size_t chunk_len = sizeof(uint32_t) * 4;
auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunk_len]);
uint8_t* cursor = buffer.get();
memcpy(cursor, &layout_bounds.left, sizeof(layout_bounds.left));
cursor += sizeof(layout_bounds.left);
memcpy(cursor, &layout_bounds.top, sizeof(layout_bounds.top));
cursor += sizeof(layout_bounds.top);
memcpy(cursor, &layout_bounds.right, sizeof(layout_bounds.right));
cursor += sizeof(layout_bounds.right);
memcpy(cursor, &layout_bounds.bottom, sizeof(layout_bounds.bottom));
cursor += sizeof(layout_bounds.bottom);
*out_len = chunk_len;
return buffer;
}
std::unique_ptr<uint8_t[]> NinePatch::SerializeRoundedRectOutline(
size_t* out_len) const {
size_t chunk_len = sizeof(uint32_t) * 6;
auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunk_len]);
uint8_t* cursor = buffer.get();
memcpy(cursor, &outline.left, sizeof(outline.left));
cursor += sizeof(outline.left);
memcpy(cursor, &outline.top, sizeof(outline.top));
cursor += sizeof(outline.top);
memcpy(cursor, &outline.right, sizeof(outline.right));
cursor += sizeof(outline.right);
memcpy(cursor, &outline.bottom, sizeof(outline.bottom));
cursor += sizeof(outline.bottom);
*((float*)cursor) = outline_radius;
cursor += sizeof(outline_radius);
*((uint32_t*)cursor) = outline_alpha;
*out_len = chunk_len;
return buffer;
}
::std::ostream& operator<<(::std::ostream& out, const Range& range) {
return out << "[" << range.start << ", " << range.end << ")";
}
::std::ostream& operator<<(::std::ostream& out, const Bounds& bounds) {
return out << "l=" << bounds.left << " t=" << bounds.top
<< " r=" << bounds.right << " b=" << bounds.bottom;
}
::std::ostream& operator<<(::std::ostream& out, const NinePatch& nine_patch) {
return out << "horizontalStretch:"
<< util::Joiner(nine_patch.horizontal_stretch_regions, " ")
<< " verticalStretch:"
<< util::Joiner(nine_patch.vertical_stretch_regions, " ")
<< " padding: " << nine_patch.padding
<< ", bounds: " << nine_patch.layout_bounds
<< ", outline: " << nine_patch.outline
<< " rad=" << nine_patch.outline_radius
<< " alpha=" << nine_patch.outline_alpha;
}
} // namespace aapt
|