File: PngCrunch.cpp

package info (click to toggle)
android-platform-frameworks-base 1%3A10.0.0%2Br36-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 321,788 kB
  • sloc: java: 962,234; cpp: 274,314; xml: 242,770; python: 5,060; sh: 1,432; ansic: 494; makefile: 47; sed: 19
file content (746 lines) | stat: -rw-r--r-- 26,327 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "compile/Png.h"

#include <png.h>
#include <zlib.h>

#include <algorithm>
#include <unordered_map>
#include <unordered_set>

#include "android-base/errors.h"
#include "android-base/logging.h"
#include "android-base/macros.h"

#include "trace/TraceBuffer.h"

namespace aapt {

// Custom deleter that destroys libpng read and info structs.
class PngReadStructDeleter {
 public:
  PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
      : read_ptr_(read_ptr), info_ptr_(info_ptr) {}

  ~PngReadStructDeleter() {
    png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
  }

 private:
  png_structp read_ptr_;
  png_infop info_ptr_;

  DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
};

// Custom deleter that destroys libpng write and info structs.
class PngWriteStructDeleter {
 public:
  PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
      : write_ptr_(write_ptr), info_ptr_(info_ptr) {}

  ~PngWriteStructDeleter() {
    png_destroy_write_struct(&write_ptr_, &info_ptr_);
  }

 private:
  png_structp write_ptr_;
  png_infop info_ptr_;

  DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
};

// Custom warning logging method that uses IDiagnostics.
static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
  IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
  diag->Warn(DiagMessage() << warning_msg);
}

// Custom error logging method that uses IDiagnostics.
static void LogError(png_structp png_ptr, png_const_charp error_msg) {
  IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
  diag->Error(DiagMessage() << error_msg);

  // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
  // error handling. If this custom error handler method were to return, libpng would, by
  // default, print the error message to stdout and call the same png_longjmp method.
  png_longjmp(png_ptr, 1);
}

static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
  io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);

  const void* in_buffer;
  size_t in_len;
  if (!in->Next(&in_buffer, &in_len)) {
    if (in->HadError()) {
      std::stringstream error_msg_builder;
      error_msg_builder << "failed reading from input";
      if (!in->GetError().empty()) {
        error_msg_builder << ": " << in->GetError();
      }
      std::string err = error_msg_builder.str();
      png_error(png_ptr, err.c_str());
    }
    return;
  }

  const size_t bytes_read = std::min(in_len, len);
  memcpy(buffer, in_buffer, bytes_read);
  if (bytes_read != in_len) {
    in->BackUp(in_len - bytes_read);
  }
}

static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
  io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);

  void* out_buffer;
  size_t out_len;
  while (len > 0) {
    if (!out->Next(&out_buffer, &out_len)) {
      if (out->HadError()) {
        std::stringstream err_msg_builder;
        err_msg_builder << "failed writing to output";
        if (!out->GetError().empty()) {
          err_msg_builder << ": " << out->GetError();
        }
        std::string err = out->GetError();
        png_error(png_ptr, err.c_str());
      }
      return;
    }

    const size_t bytes_written = std::min(out_len, len);
    memcpy(out_buffer, buffer, bytes_written);

    // Advance the input buffer.
    buffer += bytes_written;
    len -= bytes_written;

    // Advance the output buffer.
    out_len -= bytes_written;
  }

  // If the entire output buffer wasn't used, backup.
  if (out_len > 0) {
    out->BackUp(out_len);
  }
}

std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) {
  TRACE_CALL();
  // Create a diagnostics that has the source information encoded.
  SourcePathDiagnostics source_diag(source, context->GetDiagnostics());

  // Read the first 8 bytes of the file looking for the PNG signature.
  // Bail early if it does not match.
  const png_byte* signature;
  size_t buffer_size;
  if (!in->Next((const void**)&signature, &buffer_size)) {
    if (in->HadError()) {
      source_diag.Error(DiagMessage() << "failed to read PNG signature: " << in->GetError());
    } else {
      source_diag.Error(DiagMessage() << "not enough data for PNG signature");
    }
    return {};
  }

  if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
    source_diag.Error(DiagMessage() << "file signature does not match PNG signature");
    return {};
  }

  // Start at the beginning of the first chunk.
  in->BackUp(buffer_size - kPngSignatureSize);

  // Create and initialize the png_struct with the default error and warning handlers.
  // The header version is also passed in to ensure that this was built against the same
  // version of libpng.
  png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
  if (read_ptr == nullptr) {
    source_diag.Error(DiagMessage() << "failed to create libpng read png_struct");
    return {};
  }

  // Create and initialize the memory for image header and data.
  png_infop info_ptr = png_create_info_struct(read_ptr);
  if (info_ptr == nullptr) {
    source_diag.Error(DiagMessage() << "failed to create libpng read png_info");
    png_destroy_read_struct(&read_ptr, nullptr, nullptr);
    return {};
  }

  // Automatically release PNG resources at end of scope.
  PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);

  // libpng uses longjmp to jump to an error handling routine.
  // setjmp will only return true if it was jumped to, aka there was
  // an error.
  if (setjmp(png_jmpbuf(read_ptr))) {
    return {};
  }

  // Handle warnings ourselves via IDiagnostics.
  png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);

  // Set up the read functions which read from our custom data sources.
  png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);

  // Skip the signature that we already read.
  png_set_sig_bytes(read_ptr, kPngSignatureSize);

  // Read the chunk headers.
  png_read_info(read_ptr, info_ptr);

  // Extract image meta-data from the various chunk headers.
  uint32_t width, height;
  int bit_depth, color_type, interlace_method, compression_method, filter_method;
  png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
               &interlace_method, &compression_method, &filter_method);

  // When the image is read, expand it so that it is in RGBA 8888 format
  // so that image handling is uniform.

  if (color_type == PNG_COLOR_TYPE_PALETTE) {
    png_set_palette_to_rgb(read_ptr);
  }

  if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
    png_set_expand_gray_1_2_4_to_8(read_ptr);
  }

  if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
    png_set_tRNS_to_alpha(read_ptr);
  }

  if (bit_depth == 16) {
    png_set_strip_16(read_ptr);
  }

  if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
    png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
  }

  if (color_type == PNG_COLOR_TYPE_GRAY ||
      color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
    png_set_gray_to_rgb(read_ptr);
  }

  if (interlace_method != PNG_INTERLACE_NONE) {
    png_set_interlace_handling(read_ptr);
  }

  // Once all the options for reading have been set, we need to flush
  // them to libpng.
  png_read_update_info(read_ptr, info_ptr);

  // 9-patch uses int32_t to index images, so we cap the image dimensions to
  // something
  // that can always be represented by 9-patch.
  if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
    source_diag.Error(DiagMessage()
                      << "PNG image dimensions are too large: " << width << "x" << height);
    return {};
  }

  std::unique_ptr<Image> output_image = util::make_unique<Image>();
  output_image->width = static_cast<int32_t>(width);
  output_image->height = static_cast<int32_t>(height);

  const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
  CHECK(row_bytes == 4 * width);  // RGBA

  // Allocate one large block to hold the image.
  output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);

  // Create an array of rows that index into the data block.
  output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
  for (uint32_t h = 0; h < height; h++) {
    output_image->rows[h] = output_image->data.get() + (h * row_bytes);
  }

  // Actually read the image pixels.
  png_read_image(read_ptr, output_image->rows.get());

  // Finish reading. This will read any other chunks after the image data.
  png_read_end(read_ptr, info_ptr);

  return output_image;
}

// Experimentally chosen constant to be added to the overhead of using color type
// PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
// Without this, many small PNGs encoded with palettes are larger after compression than
// the same PNGs encoded as RGBA.
constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;

// Pick a color type by which to encode the image, based on which color type will take
// the least amount of disk space.
//
// 9-patch images traditionally have not been encoded with palettes.
// The original rationale was to avoid dithering until after scaling,
// but I don't think this would be an issue with palettes. Either way,
// our naive size estimation tends to be wrong for small images like 9-patches
// and using palettes balloons the size of the resulting 9-patch.
// In order to not regress in size, restrict 9-patch to not use palettes.

// The options are:
//
// - RGB
// - RGBA
// - RGB + cheap alpha
// - Color palette
// - Color palette + cheap alpha
// - Color palette + alpha palette
// - Grayscale
// - Grayscale + cheap alpha
// - Grayscale + alpha
//
static int PickColorType(int32_t width, int32_t height, bool grayscale,
                         bool convertible_to_grayscale, bool has_nine_patch,
                         size_t color_palette_size, size_t alpha_palette_size) {
  const size_t palette_chunk_size = 16 + color_palette_size * 3;
  const size_t alpha_chunk_size = 16 + alpha_palette_size;
  const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
  const size_t color_data_chunk_size = 16 + 3 * width * height;
  const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
  const size_t palette_data_chunk_size = 16 + width * height;

  if (grayscale) {
    if (alpha_palette_size == 0) {
      // This is the smallest the data can be.
      return PNG_COLOR_TYPE_GRAY;
    } else if (color_palette_size <= 256 && !has_nine_patch) {
      // This grayscale has alpha and can fit within a palette.
      // See if it is worth fitting into a palette.
      const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
                                       palette_data_chunk_size +
                                       kPaletteOverheadConstant;
      if (grayscale_alpha_data_chunk_size > palette_threshold) {
        return PNG_COLOR_TYPE_PALETTE;
      }
    }
    return PNG_COLOR_TYPE_GRAY_ALPHA;
  }

  if (color_palette_size <= 256 && !has_nine_patch) {
    // This image can fit inside a palette. Let's see if it is worth it.
    size_t total_size_with_palette =
        palette_data_chunk_size + palette_chunk_size;
    size_t total_size_without_palette = color_data_chunk_size;
    if (alpha_palette_size > 0) {
      total_size_with_palette += alpha_palette_size;
      total_size_without_palette = color_alpha_data_chunk_size;
    }

    if (total_size_without_palette >
        total_size_with_palette + kPaletteOverheadConstant) {
      return PNG_COLOR_TYPE_PALETTE;
    }
  }

  if (convertible_to_grayscale) {
    if (alpha_palette_size == 0) {
      return PNG_COLOR_TYPE_GRAY;
    } else {
      return PNG_COLOR_TYPE_GRAY_ALPHA;
    }
  }

  if (alpha_palette_size == 0) {
    return PNG_COLOR_TYPE_RGB;
  }
  return PNG_COLOR_TYPE_RGBA;
}

// Assigns indices to the color and alpha palettes, encodes them, and then invokes
// png_set_PLTE/png_set_tRNS.
// This must be done before writing image data.
// Image data must be transformed to use the indices assigned within the palette.
static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
                         std::unordered_map<uint32_t, int>* color_palette,
                         std::unordered_set<uint32_t>* alpha_palette) {
  CHECK(color_palette->size() <= 256);
  CHECK(alpha_palette->size() <= 256);

  // Populate the PNG palette struct and assign indices to the color palette.

  // Colors in the alpha palette should have smaller indices.
  // This will ensure that we can truncate the alpha palette if it is
  // smaller than the color palette.
  int index = 0;
  for (uint32_t color : *alpha_palette) {
    (*color_palette)[color] = index++;
  }

  // Assign the rest of the entries.
  for (auto& entry : *color_palette) {
    if (entry.second == -1) {
      entry.second = index++;
    }
  }

  // Create the PNG color palette struct.
  auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);

  std::unique_ptr<png_byte[]> alpha_palette_bytes;
  if (!alpha_palette->empty()) {
    alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
  }

  for (const auto& entry : *color_palette) {
    const uint32_t color = entry.first;
    const int index = entry.second;
    CHECK(index >= 0);
    CHECK(static_cast<size_t>(index) < color_palette->size());

    png_colorp slot = color_palette_bytes.get() + index;
    slot->red = color >> 24;
    slot->green = color >> 16;
    slot->blue = color >> 8;

    const png_byte alpha = color & 0x000000ff;
    if (alpha != 0xff && alpha_palette_bytes) {
      CHECK(static_cast<size_t>(index) < alpha_palette->size());
      alpha_palette_bytes[index] = alpha;
    }
  }

  // The bytes get copied here, so it is safe to release color_palette_bytes at
  // the end of function
  // scope.
  png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());

  if (alpha_palette_bytes) {
    png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
                 nullptr);
  }
}

// Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
// before writing image data.
static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
                           const NinePatch* nine_patch) {
  // The order of the chunks is important.
  // 9-patch code in older platforms expects the 9-patch chunk to be last.

  png_unknown_chunk unknown_chunks[3];
  memset(unknown_chunks, 0, sizeof(unknown_chunks));

  size_t index = 0;
  size_t chunk_len = 0;

  std::unique_ptr<uint8_t[]> serialized_outline =
      nine_patch->SerializeRoundedRectOutline(&chunk_len);
  strcpy((char*)unknown_chunks[index].name, "npOl");
  unknown_chunks[index].size = chunk_len;
  unknown_chunks[index].data = (png_bytep)serialized_outline.get();
  unknown_chunks[index].location = PNG_HAVE_PLTE;
  index++;

  std::unique_ptr<uint8_t[]> serialized_layout_bounds;
  if (nine_patch->layout_bounds.nonZero()) {
    serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
    strcpy((char*)unknown_chunks[index].name, "npLb");
    unknown_chunks[index].size = chunk_len;
    unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
    unknown_chunks[index].location = PNG_HAVE_PLTE;
    index++;
  }

  std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
  strcpy((char*)unknown_chunks[index].name, "npTc");
  unknown_chunks[index].size = chunk_len;
  unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
  unknown_chunks[index].location = PNG_HAVE_PLTE;
  index++;

  // Handle all unknown chunks. We are manually setting the chunks here,
  // so we will only ever handle our custom chunks.
  png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);

  // Set the actual chunks here. The data gets copied, so our buffers can
  // safely go out of scope.
  png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
}

bool WritePng(IAaptContext* context, const Image* image,
              const NinePatch* nine_patch, io::OutputStream* out,
              const PngOptions& options) {
  TRACE_CALL();
  // Create and initialize the write png_struct with the default error and
  // warning handlers.
  // The header version is also passed in to ensure that this was built against the same
  // version of libpng.
  png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
  if (write_ptr == nullptr) {
    context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct");
    return false;
  }

  // Allocate memory to store image header data.
  png_infop write_info_ptr = png_create_info_struct(write_ptr);
  if (write_info_ptr == nullptr) {
    context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info");
    png_destroy_write_struct(&write_ptr, nullptr);
    return false;
  }

  // Automatically release PNG resources at end of scope.
  PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);

  // libpng uses longjmp to jump to error handling routines.
  // setjmp will return true only if it was jumped to, aka, there was an error.
  if (setjmp(png_jmpbuf(write_ptr))) {
    return false;
  }

  // Handle warnings with our IDiagnostics.
  png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);

  // Set up the write functions which write to our custom data sources.
  png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);

  // We want small files and can take the performance hit to achieve this goal.
  png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);

  // Begin analysis of the image data.
  // Scan the entire image and determine if:
  // 1. Every pixel has R == G == B (grayscale)
  // 2. Every pixel has A == 255 (opaque)
  // 3. There are no more than 256 distinct RGBA colors (palette).
  std::unordered_map<uint32_t, int> color_palette;
  std::unordered_set<uint32_t> alpha_palette;
  bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
  bool grayscale = true;
  int max_gray_deviation = 0;

  for (int32_t y = 0; y < image->height; y++) {
    const uint8_t* row = image->rows[y];
    for (int32_t x = 0; x < image->width; x++) {
      int red = *row++;
      int green = *row++;
      int blue = *row++;
      int alpha = *row++;

      if (alpha == 0) {
        // The color is completely transparent.
        // For purposes of palettes and grayscale optimization,
        // treat all channels as 0x00.
        needs_to_zero_rgb_channels_of_transparent_pixels =
            needs_to_zero_rgb_channels_of_transparent_pixels ||
            (red != 0 || green != 0 || blue != 0);
        red = green = blue = 0;
      }

      // Insert the color into the color palette.
      const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
      color_palette[color] = -1;

      // If the pixel has non-opaque alpha, insert it into the
      // alpha palette.
      if (alpha != 0xff) {
        alpha_palette.insert(color);
      }

      // Check if the image is indeed grayscale.
      if (grayscale) {
        if (red != green || red != blue) {
          grayscale = false;
        }
      }

      // Calculate the gray scale deviation so that it can be compared
      // with the threshold.
      max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
      max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
      max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
    }
  }

  if (context->IsVerbose()) {
    DiagMessage msg;
    msg << " paletteSize=" << color_palette.size()
        << " alphaPaletteSize=" << alpha_palette.size()
        << " maxGrayDeviation=" << max_gray_deviation
        << " grayScale=" << (grayscale ? "true" : "false");
    context->GetDiagnostics()->Note(msg);
  }

  const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;

  const int new_color_type = PickColorType(
      image->width, image->height, grayscale, convertible_to_grayscale,
      nine_patch != nullptr, color_palette.size(), alpha_palette.size());

  if (context->IsVerbose()) {
    DiagMessage msg;
    msg << "encoding PNG ";
    if (nine_patch) {
      msg << "(with 9-patch) as ";
    }
    switch (new_color_type) {
      case PNG_COLOR_TYPE_GRAY:
        msg << "GRAY";
        break;
      case PNG_COLOR_TYPE_GRAY_ALPHA:
        msg << "GRAY + ALPHA";
        break;
      case PNG_COLOR_TYPE_RGB:
        msg << "RGB";
        break;
      case PNG_COLOR_TYPE_RGB_ALPHA:
        msg << "RGBA";
        break;
      case PNG_COLOR_TYPE_PALETTE:
        msg << "PALETTE";
        break;
      default:
        msg << "unknown type " << new_color_type;
        break;
    }
    context->GetDiagnostics()->Note(msg);
  }

  png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
               new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
               PNG_FILTER_TYPE_DEFAULT);

  if (new_color_type & PNG_COLOR_MASK_PALETTE) {
    // Assigns indices to the palette, and writes the encoded palette to the
    // libpng writePtr.
    WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
    png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
  } else {
    png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
  }

  if (nine_patch) {
    WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
  }

  // Flush our updates to the header.
  png_write_info(write_ptr, write_info_ptr);

  // Write out each row of image data according to its encoding.
  if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
    // 1 byte/pixel.
    auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);

    for (int32_t y = 0; y < image->height; y++) {
      png_const_bytep in_row = image->rows[y];
      for (int32_t x = 0; x < image->width; x++) {
        int rr = *in_row++;
        int gg = *in_row++;
        int bb = *in_row++;
        int aa = *in_row++;
        if (aa == 0) {
          // Zero out color channels when transparent.
          rr = gg = bb = 0;
        }

        const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
        const int idx = color_palette[color];
        CHECK(idx != -1);
        out_row[x] = static_cast<png_byte>(idx);
      }
      png_write_row(write_ptr, out_row.get());
    }
  } else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
             new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
    const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
    auto out_row =
        std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);

    for (int32_t y = 0; y < image->height; y++) {
      png_const_bytep in_row = image->rows[y];
      for (int32_t x = 0; x < image->width; x++) {
        int rr = in_row[x * 4];
        int gg = in_row[x * 4 + 1];
        int bb = in_row[x * 4 + 2];
        int aa = in_row[x * 4 + 3];
        if (aa == 0) {
          // Zero out the gray channel when transparent.
          rr = gg = bb = 0;
        }

        if (grayscale) {
          // The image was already grayscale, red == green == blue.
          out_row[x * bpp] = in_row[x * 4];
        } else {
          // The image is convertible to grayscale, use linear-luminance of
          // sRGB colorspace:
          // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
          out_row[x * bpp] =
              (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
        }

        if (bpp == 2) {
          // Write out alpha if we have it.
          out_row[x * bpp + 1] = aa;
        }
      }
      png_write_row(write_ptr, out_row.get());
    }
  } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
    const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
    if (needs_to_zero_rgb_channels_of_transparent_pixels) {
      // The source RGBA data can't be used as-is, because we need to zero out
      // the RGB values of transparent pixels.
      auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);

      for (int32_t y = 0; y < image->height; y++) {
        png_const_bytep in_row = image->rows[y];
        for (int32_t x = 0; x < image->width; x++) {
          int rr = *in_row++;
          int gg = *in_row++;
          int bb = *in_row++;
          int aa = *in_row++;
          if (aa == 0) {
            // Zero out the RGB channels when transparent.
            rr = gg = bb = 0;
          }
          out_row[x * bpp] = rr;
          out_row[x * bpp + 1] = gg;
          out_row[x * bpp + 2] = bb;
          if (bpp == 4) {
            out_row[x * bpp + 3] = aa;
          }
        }
        png_write_row(write_ptr, out_row.get());
      }
    } else {
      // The source image can be used as-is, just tell libpng whether or not to
      // ignore the alpha channel.
      if (new_color_type == PNG_COLOR_TYPE_RGB) {
        // Delete the extraneous alpha values that we appended to our buffer
        // when reading the original values.
        png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
      }
      png_write_image(write_ptr, image->rows.get());
    }
  } else {
    LOG(FATAL) << "unreachable";
  }

  png_write_end(write_ptr, write_info_ptr);
  return true;
}

}  // namespace aapt