1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compile/Png.h"
#include <png.h>
#include <zlib.h>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include "android-base/errors.h"
#include "android-base/logging.h"
#include "android-base/macros.h"
#include "trace/TraceBuffer.h"
namespace aapt {
// Custom deleter that destroys libpng read and info structs.
class PngReadStructDeleter {
public:
PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
: read_ptr_(read_ptr), info_ptr_(info_ptr) {}
~PngReadStructDeleter() {
png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
}
private:
png_structp read_ptr_;
png_infop info_ptr_;
DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
};
// Custom deleter that destroys libpng write and info structs.
class PngWriteStructDeleter {
public:
PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
: write_ptr_(write_ptr), info_ptr_(info_ptr) {}
~PngWriteStructDeleter() {
png_destroy_write_struct(&write_ptr_, &info_ptr_);
}
private:
png_structp write_ptr_;
png_infop info_ptr_;
DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
};
// Custom warning logging method that uses IDiagnostics.
static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
diag->Warn(DiagMessage() << warning_msg);
}
// Custom error logging method that uses IDiagnostics.
static void LogError(png_structp png_ptr, png_const_charp error_msg) {
IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
diag->Error(DiagMessage() << error_msg);
// Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
// error handling. If this custom error handler method were to return, libpng would, by
// default, print the error message to stdout and call the same png_longjmp method.
png_longjmp(png_ptr, 1);
}
static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);
const void* in_buffer;
size_t in_len;
if (!in->Next(&in_buffer, &in_len)) {
if (in->HadError()) {
std::stringstream error_msg_builder;
error_msg_builder << "failed reading from input";
if (!in->GetError().empty()) {
error_msg_builder << ": " << in->GetError();
}
std::string err = error_msg_builder.str();
png_error(png_ptr, err.c_str());
}
return;
}
const size_t bytes_read = std::min(in_len, len);
memcpy(buffer, in_buffer, bytes_read);
if (bytes_read != in_len) {
in->BackUp(in_len - bytes_read);
}
}
static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);
void* out_buffer;
size_t out_len;
while (len > 0) {
if (!out->Next(&out_buffer, &out_len)) {
if (out->HadError()) {
std::stringstream err_msg_builder;
err_msg_builder << "failed writing to output";
if (!out->GetError().empty()) {
err_msg_builder << ": " << out->GetError();
}
std::string err = out->GetError();
png_error(png_ptr, err.c_str());
}
return;
}
const size_t bytes_written = std::min(out_len, len);
memcpy(out_buffer, buffer, bytes_written);
// Advance the input buffer.
buffer += bytes_written;
len -= bytes_written;
// Advance the output buffer.
out_len -= bytes_written;
}
// If the entire output buffer wasn't used, backup.
if (out_len > 0) {
out->BackUp(out_len);
}
}
std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) {
TRACE_CALL();
// Create a diagnostics that has the source information encoded.
SourcePathDiagnostics source_diag(source, context->GetDiagnostics());
// Read the first 8 bytes of the file looking for the PNG signature.
// Bail early if it does not match.
const png_byte* signature;
size_t buffer_size;
if (!in->Next((const void**)&signature, &buffer_size)) {
if (in->HadError()) {
source_diag.Error(DiagMessage() << "failed to read PNG signature: " << in->GetError());
} else {
source_diag.Error(DiagMessage() << "not enough data for PNG signature");
}
return {};
}
if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
source_diag.Error(DiagMessage() << "file signature does not match PNG signature");
return {};
}
// Start at the beginning of the first chunk.
in->BackUp(buffer_size - kPngSignatureSize);
// Create and initialize the png_struct with the default error and warning handlers.
// The header version is also passed in to ensure that this was built against the same
// version of libpng.
png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (read_ptr == nullptr) {
source_diag.Error(DiagMessage() << "failed to create libpng read png_struct");
return {};
}
// Create and initialize the memory for image header and data.
png_infop info_ptr = png_create_info_struct(read_ptr);
if (info_ptr == nullptr) {
source_diag.Error(DiagMessage() << "failed to create libpng read png_info");
png_destroy_read_struct(&read_ptr, nullptr, nullptr);
return {};
}
// Automatically release PNG resources at end of scope.
PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);
// libpng uses longjmp to jump to an error handling routine.
// setjmp will only return true if it was jumped to, aka there was
// an error.
if (setjmp(png_jmpbuf(read_ptr))) {
return {};
}
// Handle warnings ourselves via IDiagnostics.
png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);
// Set up the read functions which read from our custom data sources.
png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);
// Skip the signature that we already read.
png_set_sig_bytes(read_ptr, kPngSignatureSize);
// Read the chunk headers.
png_read_info(read_ptr, info_ptr);
// Extract image meta-data from the various chunk headers.
uint32_t width, height;
int bit_depth, color_type, interlace_method, compression_method, filter_method;
png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
&interlace_method, &compression_method, &filter_method);
// When the image is read, expand it so that it is in RGBA 8888 format
// so that image handling is uniform.
if (color_type == PNG_COLOR_TYPE_PALETTE) {
png_set_palette_to_rgb(read_ptr);
}
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
png_set_expand_gray_1_2_4_to_8(read_ptr);
}
if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
png_set_tRNS_to_alpha(read_ptr);
}
if (bit_depth == 16) {
png_set_strip_16(read_ptr);
}
if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
}
if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
png_set_gray_to_rgb(read_ptr);
}
if (interlace_method != PNG_INTERLACE_NONE) {
png_set_interlace_handling(read_ptr);
}
// Once all the options for reading have been set, we need to flush
// them to libpng.
png_read_update_info(read_ptr, info_ptr);
// 9-patch uses int32_t to index images, so we cap the image dimensions to
// something
// that can always be represented by 9-patch.
if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
source_diag.Error(DiagMessage()
<< "PNG image dimensions are too large: " << width << "x" << height);
return {};
}
std::unique_ptr<Image> output_image = util::make_unique<Image>();
output_image->width = static_cast<int32_t>(width);
output_image->height = static_cast<int32_t>(height);
const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
CHECK(row_bytes == 4 * width); // RGBA
// Allocate one large block to hold the image.
output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);
// Create an array of rows that index into the data block.
output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
for (uint32_t h = 0; h < height; h++) {
output_image->rows[h] = output_image->data.get() + (h * row_bytes);
}
// Actually read the image pixels.
png_read_image(read_ptr, output_image->rows.get());
// Finish reading. This will read any other chunks after the image data.
png_read_end(read_ptr, info_ptr);
return output_image;
}
// Experimentally chosen constant to be added to the overhead of using color type
// PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
// Without this, many small PNGs encoded with palettes are larger after compression than
// the same PNGs encoded as RGBA.
constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
// Pick a color type by which to encode the image, based on which color type will take
// the least amount of disk space.
//
// 9-patch images traditionally have not been encoded with palettes.
// The original rationale was to avoid dithering until after scaling,
// but I don't think this would be an issue with palettes. Either way,
// our naive size estimation tends to be wrong for small images like 9-patches
// and using palettes balloons the size of the resulting 9-patch.
// In order to not regress in size, restrict 9-patch to not use palettes.
// The options are:
//
// - RGB
// - RGBA
// - RGB + cheap alpha
// - Color palette
// - Color palette + cheap alpha
// - Color palette + alpha palette
// - Grayscale
// - Grayscale + cheap alpha
// - Grayscale + alpha
//
static int PickColorType(int32_t width, int32_t height, bool grayscale,
bool convertible_to_grayscale, bool has_nine_patch,
size_t color_palette_size, size_t alpha_palette_size) {
const size_t palette_chunk_size = 16 + color_palette_size * 3;
const size_t alpha_chunk_size = 16 + alpha_palette_size;
const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
const size_t color_data_chunk_size = 16 + 3 * width * height;
const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
const size_t palette_data_chunk_size = 16 + width * height;
if (grayscale) {
if (alpha_palette_size == 0) {
// This is the smallest the data can be.
return PNG_COLOR_TYPE_GRAY;
} else if (color_palette_size <= 256 && !has_nine_patch) {
// This grayscale has alpha and can fit within a palette.
// See if it is worth fitting into a palette.
const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
palette_data_chunk_size +
kPaletteOverheadConstant;
if (grayscale_alpha_data_chunk_size > palette_threshold) {
return PNG_COLOR_TYPE_PALETTE;
}
}
return PNG_COLOR_TYPE_GRAY_ALPHA;
}
if (color_palette_size <= 256 && !has_nine_patch) {
// This image can fit inside a palette. Let's see if it is worth it.
size_t total_size_with_palette =
palette_data_chunk_size + palette_chunk_size;
size_t total_size_without_palette = color_data_chunk_size;
if (alpha_palette_size > 0) {
total_size_with_palette += alpha_palette_size;
total_size_without_palette = color_alpha_data_chunk_size;
}
if (total_size_without_palette >
total_size_with_palette + kPaletteOverheadConstant) {
return PNG_COLOR_TYPE_PALETTE;
}
}
if (convertible_to_grayscale) {
if (alpha_palette_size == 0) {
return PNG_COLOR_TYPE_GRAY;
} else {
return PNG_COLOR_TYPE_GRAY_ALPHA;
}
}
if (alpha_palette_size == 0) {
return PNG_COLOR_TYPE_RGB;
}
return PNG_COLOR_TYPE_RGBA;
}
// Assigns indices to the color and alpha palettes, encodes them, and then invokes
// png_set_PLTE/png_set_tRNS.
// This must be done before writing image data.
// Image data must be transformed to use the indices assigned within the palette.
static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
std::unordered_map<uint32_t, int>* color_palette,
std::unordered_set<uint32_t>* alpha_palette) {
CHECK(color_palette->size() <= 256);
CHECK(alpha_palette->size() <= 256);
// Populate the PNG palette struct and assign indices to the color palette.
// Colors in the alpha palette should have smaller indices.
// This will ensure that we can truncate the alpha palette if it is
// smaller than the color palette.
int index = 0;
for (uint32_t color : *alpha_palette) {
(*color_palette)[color] = index++;
}
// Assign the rest of the entries.
for (auto& entry : *color_palette) {
if (entry.second == -1) {
entry.second = index++;
}
}
// Create the PNG color palette struct.
auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);
std::unique_ptr<png_byte[]> alpha_palette_bytes;
if (!alpha_palette->empty()) {
alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
}
for (const auto& entry : *color_palette) {
const uint32_t color = entry.first;
const int index = entry.second;
CHECK(index >= 0);
CHECK(static_cast<size_t>(index) < color_palette->size());
png_colorp slot = color_palette_bytes.get() + index;
slot->red = color >> 24;
slot->green = color >> 16;
slot->blue = color >> 8;
const png_byte alpha = color & 0x000000ff;
if (alpha != 0xff && alpha_palette_bytes) {
CHECK(static_cast<size_t>(index) < alpha_palette->size());
alpha_palette_bytes[index] = alpha;
}
}
// The bytes get copied here, so it is safe to release color_palette_bytes at
// the end of function
// scope.
png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());
if (alpha_palette_bytes) {
png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
nullptr);
}
}
// Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
// before writing image data.
static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
const NinePatch* nine_patch) {
// The order of the chunks is important.
// 9-patch code in older platforms expects the 9-patch chunk to be last.
png_unknown_chunk unknown_chunks[3];
memset(unknown_chunks, 0, sizeof(unknown_chunks));
size_t index = 0;
size_t chunk_len = 0;
std::unique_ptr<uint8_t[]> serialized_outline =
nine_patch->SerializeRoundedRectOutline(&chunk_len);
strcpy((char*)unknown_chunks[index].name, "npOl");
unknown_chunks[index].size = chunk_len;
unknown_chunks[index].data = (png_bytep)serialized_outline.get();
unknown_chunks[index].location = PNG_HAVE_PLTE;
index++;
std::unique_ptr<uint8_t[]> serialized_layout_bounds;
if (nine_patch->layout_bounds.nonZero()) {
serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
strcpy((char*)unknown_chunks[index].name, "npLb");
unknown_chunks[index].size = chunk_len;
unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
unknown_chunks[index].location = PNG_HAVE_PLTE;
index++;
}
std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
strcpy((char*)unknown_chunks[index].name, "npTc");
unknown_chunks[index].size = chunk_len;
unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
unknown_chunks[index].location = PNG_HAVE_PLTE;
index++;
// Handle all unknown chunks. We are manually setting the chunks here,
// so we will only ever handle our custom chunks.
png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
// Set the actual chunks here. The data gets copied, so our buffers can
// safely go out of scope.
png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
}
bool WritePng(IAaptContext* context, const Image* image,
const NinePatch* nine_patch, io::OutputStream* out,
const PngOptions& options) {
TRACE_CALL();
// Create and initialize the write png_struct with the default error and
// warning handlers.
// The header version is also passed in to ensure that this was built against the same
// version of libpng.
png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (write_ptr == nullptr) {
context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct");
return false;
}
// Allocate memory to store image header data.
png_infop write_info_ptr = png_create_info_struct(write_ptr);
if (write_info_ptr == nullptr) {
context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info");
png_destroy_write_struct(&write_ptr, nullptr);
return false;
}
// Automatically release PNG resources at end of scope.
PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);
// libpng uses longjmp to jump to error handling routines.
// setjmp will return true only if it was jumped to, aka, there was an error.
if (setjmp(png_jmpbuf(write_ptr))) {
return false;
}
// Handle warnings with our IDiagnostics.
png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);
// Set up the write functions which write to our custom data sources.
png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);
// We want small files and can take the performance hit to achieve this goal.
png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
// Begin analysis of the image data.
// Scan the entire image and determine if:
// 1. Every pixel has R == G == B (grayscale)
// 2. Every pixel has A == 255 (opaque)
// 3. There are no more than 256 distinct RGBA colors (palette).
std::unordered_map<uint32_t, int> color_palette;
std::unordered_set<uint32_t> alpha_palette;
bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
bool grayscale = true;
int max_gray_deviation = 0;
for (int32_t y = 0; y < image->height; y++) {
const uint8_t* row = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int red = *row++;
int green = *row++;
int blue = *row++;
int alpha = *row++;
if (alpha == 0) {
// The color is completely transparent.
// For purposes of palettes and grayscale optimization,
// treat all channels as 0x00.
needs_to_zero_rgb_channels_of_transparent_pixels =
needs_to_zero_rgb_channels_of_transparent_pixels ||
(red != 0 || green != 0 || blue != 0);
red = green = blue = 0;
}
// Insert the color into the color palette.
const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
color_palette[color] = -1;
// If the pixel has non-opaque alpha, insert it into the
// alpha palette.
if (alpha != 0xff) {
alpha_palette.insert(color);
}
// Check if the image is indeed grayscale.
if (grayscale) {
if (red != green || red != blue) {
grayscale = false;
}
}
// Calculate the gray scale deviation so that it can be compared
// with the threshold.
max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
}
}
if (context->IsVerbose()) {
DiagMessage msg;
msg << " paletteSize=" << color_palette.size()
<< " alphaPaletteSize=" << alpha_palette.size()
<< " maxGrayDeviation=" << max_gray_deviation
<< " grayScale=" << (grayscale ? "true" : "false");
context->GetDiagnostics()->Note(msg);
}
const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;
const int new_color_type = PickColorType(
image->width, image->height, grayscale, convertible_to_grayscale,
nine_patch != nullptr, color_palette.size(), alpha_palette.size());
if (context->IsVerbose()) {
DiagMessage msg;
msg << "encoding PNG ";
if (nine_patch) {
msg << "(with 9-patch) as ";
}
switch (new_color_type) {
case PNG_COLOR_TYPE_GRAY:
msg << "GRAY";
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
msg << "GRAY + ALPHA";
break;
case PNG_COLOR_TYPE_RGB:
msg << "RGB";
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
msg << "RGBA";
break;
case PNG_COLOR_TYPE_PALETTE:
msg << "PALETTE";
break;
default:
msg << "unknown type " << new_color_type;
break;
}
context->GetDiagnostics()->Note(msg);
}
png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
if (new_color_type & PNG_COLOR_MASK_PALETTE) {
// Assigns indices to the palette, and writes the encoded palette to the
// libpng writePtr.
WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
} else {
png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
}
if (nine_patch) {
WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
}
// Flush our updates to the header.
png_write_info(write_ptr, write_info_ptr);
// Write out each row of image data according to its encoding.
if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
// 1 byte/pixel.
auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
for (int32_t y = 0; y < image->height; y++) {
png_const_bytep in_row = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int rr = *in_row++;
int gg = *in_row++;
int bb = *in_row++;
int aa = *in_row++;
if (aa == 0) {
// Zero out color channels when transparent.
rr = gg = bb = 0;
}
const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
const int idx = color_palette[color];
CHECK(idx != -1);
out_row[x] = static_cast<png_byte>(idx);
}
png_write_row(write_ptr, out_row.get());
}
} else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
auto out_row =
std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
for (int32_t y = 0; y < image->height; y++) {
png_const_bytep in_row = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int rr = in_row[x * 4];
int gg = in_row[x * 4 + 1];
int bb = in_row[x * 4 + 2];
int aa = in_row[x * 4 + 3];
if (aa == 0) {
// Zero out the gray channel when transparent.
rr = gg = bb = 0;
}
if (grayscale) {
// The image was already grayscale, red == green == blue.
out_row[x * bpp] = in_row[x * 4];
} else {
// The image is convertible to grayscale, use linear-luminance of
// sRGB colorspace:
// https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
out_row[x * bpp] =
(png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
}
if (bpp == 2) {
// Write out alpha if we have it.
out_row[x * bpp + 1] = aa;
}
}
png_write_row(write_ptr, out_row.get());
}
} else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
if (needs_to_zero_rgb_channels_of_transparent_pixels) {
// The source RGBA data can't be used as-is, because we need to zero out
// the RGB values of transparent pixels.
auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
for (int32_t y = 0; y < image->height; y++) {
png_const_bytep in_row = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int rr = *in_row++;
int gg = *in_row++;
int bb = *in_row++;
int aa = *in_row++;
if (aa == 0) {
// Zero out the RGB channels when transparent.
rr = gg = bb = 0;
}
out_row[x * bpp] = rr;
out_row[x * bpp + 1] = gg;
out_row[x * bpp + 2] = bb;
if (bpp == 4) {
out_row[x * bpp + 3] = aa;
}
}
png_write_row(write_ptr, out_row.get());
}
} else {
// The source image can be used as-is, just tell libpng whether or not to
// ignore the alpha channel.
if (new_color_type == PNG_COLOR_TYPE_RGB) {
// Delete the extraneous alpha values that we appended to our buffer
// when reading the original values.
png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
}
png_write_image(write_ptr, image->rows.get());
}
} else {
LOG(FATAL) << "unreachable";
}
png_write_end(write_ptr, write_info_ptr);
return true;
}
} // namespace aapt
|