1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ProfileData.h"
#include "Properties.h"
#include <cinttypes>
namespace android {
namespace uirenderer {
static const char* JANK_TYPE_NAMES[] = {
"Missed Vsync", "High input latency", "Slow UI thread",
"Slow bitmap uploads", "Slow issue draw commands", "Frame deadline missed",
"Frame deadline missed (legacy)"};
// The bucketing algorithm controls so to speak
// If a frame is <= to this it goes in bucket 0
static const uint32_t kBucketMinThreshold = 5;
// If a frame is > this, start counting in increments of 2ms
static const uint32_t kBucket2msIntervals = 32;
// If a frame is > this, start counting in increments of 4ms
static const uint32_t kBucket4msIntervals = 48;
// The interval of the slow frame histogram
static const uint32_t kSlowFrameBucketIntervalMs = 50;
// The start point of the slow frame bucket in ms
static const uint32_t kSlowFrameBucketStartMs = 150;
// This will be called every frame, performance sensitive
// Uses bit twiddling to avoid branching while achieving the packing desired
static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) {
uint32_t index = static_cast<uint32_t>(ns2ms(frameTime));
// If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result
// of negating 1 (twos compliment, yaay) else mask will be 0
uint32_t mask = -(index > kBucketMinThreshold);
// If index > threshold, this will essentially perform:
// amountAboveThreshold = index - threshold;
// index = threshold + (amountAboveThreshold / 2)
// However if index is <= this will do nothing. It will underflow, do
// a right shift by 0 (no-op), then overflow back to the original value
index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals)) + kBucket4msIntervals;
index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals)) + kBucket2msIntervals;
// If index was < minThreshold at the start of all this it's going to
// be a pretty garbage value right now. However, mask is 0 so we'll end
// up with the desired result of 0.
index = (index - kBucketMinThreshold) & mask;
return index;
}
// Only called when dumping stats, less performance sensitive
uint32_t ProfileData::frameTimeForFrameCountIndex(uint32_t index) {
index = index + kBucketMinThreshold;
if (index > kBucket2msIntervals) {
index += (index - kBucket2msIntervals);
}
if (index > kBucket4msIntervals) {
// This works because it was already doubled by the above if
// 1 is added to shift slightly more towards the middle of the bucket
index += (index - kBucket4msIntervals) + 1;
}
return index;
}
uint32_t ProfileData::frameTimeForSlowFrameCountIndex(uint32_t index) {
return (index * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
}
void ProfileData::mergeWith(const ProfileData& other) {
// Make sure we don't overflow Just In Case
uint32_t divider = 0;
if (mTotalFrameCount > (1 << 24)) {
divider = 4;
}
for (size_t i = 0; i < other.mJankTypeCounts.size(); i++) {
mJankTypeCounts[i] >>= divider;
mJankTypeCounts[i] += other.mJankTypeCounts[i];
}
for (size_t i = 0; i < other.mFrameCounts.size(); i++) {
mFrameCounts[i] >>= divider;
mFrameCounts[i] += other.mFrameCounts[i];
}
mJankFrameCount >>= divider;
mJankFrameCount += other.mJankFrameCount;
mJankLegacyFrameCount >>= divider;
mJankLegacyFrameCount += other.mJankLegacyFrameCount;
mTotalFrameCount >>= divider;
mTotalFrameCount += other.mTotalFrameCount;
if (mStatStartTime > other.mStatStartTime || mStatStartTime == 0) {
mStatStartTime = other.mStatStartTime;
}
for (size_t i = 0; i < other.mGPUFrameCounts.size(); i++) {
mGPUFrameCounts[i] >>= divider;
mGPUFrameCounts[i] += other.mGPUFrameCounts[i];
}
mPipelineType = other.mPipelineType;
}
void ProfileData::dump(int fd) const {
dprintf(fd, "\nStats since: %" PRIu64 "ns", mStatStartTime);
dprintf(fd, "\nTotal frames rendered: %u", mTotalFrameCount);
dprintf(fd, "\nJanky frames: %u (%.2f%%)", mJankFrameCount,
mTotalFrameCount == 0 ? 0.0f
: (float)mJankFrameCount / (float)mTotalFrameCount * 100.0f);
dprintf(fd, "\nJanky frames (legacy): %u (%.2f%%)", mJankLegacyFrameCount, mTotalFrameCount == 0
? 0.0f
: (float)mJankLegacyFrameCount / (float)mTotalFrameCount * 100.0f);
dprintf(fd, "\n50th percentile: %ums", findPercentile(50));
dprintf(fd, "\n90th percentile: %ums", findPercentile(90));
dprintf(fd, "\n95th percentile: %ums", findPercentile(95));
dprintf(fd, "\n99th percentile: %ums", findPercentile(99));
for (int i = 0; i < NUM_BUCKETS; i++) {
dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], mJankTypeCounts[i]);
}
dprintf(fd, "\nHISTOGRAM:");
histogramForEach([fd](HistogramEntry entry) {
dprintf(fd, " %ums=%u", entry.renderTimeMs, entry.frameCount);
});
dprintf(fd, "\n50th gpu percentile: %ums", findGPUPercentile(50));
dprintf(fd, "\n90th gpu percentile: %ums", findGPUPercentile(90));
dprintf(fd, "\n95th gpu percentile: %ums", findGPUPercentile(95));
dprintf(fd, "\n99th gpu percentile: %ums", findGPUPercentile(99));
dprintf(fd, "\nGPU HISTOGRAM:");
histogramGPUForEach([fd](HistogramEntry entry) {
dprintf(fd, " %ums=%u", entry.renderTimeMs, entry.frameCount);
});
dprintf(fd, "\n");
}
uint32_t ProfileData::findPercentile(int percentile) const {
int pos = percentile * mTotalFrameCount / 100;
int remaining = mTotalFrameCount - pos;
for (int i = mSlowFrameCounts.size() - 1; i >= 0; i--) {
remaining -= mSlowFrameCounts[i];
if (remaining <= 0) {
return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
}
}
for (int i = mFrameCounts.size() - 1; i >= 0; i--) {
remaining -= mFrameCounts[i];
if (remaining <= 0) {
return frameTimeForFrameCountIndex(i);
}
}
return 0;
}
void ProfileData::reset() {
mJankTypeCounts.fill(0);
mFrameCounts.fill(0);
mGPUFrameCounts.fill(0);
mSlowFrameCounts.fill(0);
mTotalFrameCount = 0;
mJankFrameCount = 0;
mJankLegacyFrameCount = 0;
mStatStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
mPipelineType = Properties::getRenderPipelineType();
}
void ProfileData::reportFrame(int64_t duration) {
mTotalFrameCount++;
uint32_t framebucket = frameCountIndexForFrameTime(duration);
if (framebucket <= mFrameCounts.size()) {
mFrameCounts[framebucket]++;
} else {
framebucket = (ns2ms(duration) - kSlowFrameBucketStartMs) / kSlowFrameBucketIntervalMs;
framebucket = std::min(framebucket, static_cast<uint32_t>(mSlowFrameCounts.size() - 1));
mSlowFrameCounts[framebucket]++;
}
}
void ProfileData::histogramForEach(const std::function<void(HistogramEntry)>& callback) const {
for (size_t i = 0; i < mFrameCounts.size(); i++) {
callback(HistogramEntry{frameTimeForFrameCountIndex(i), mFrameCounts[i]});
}
for (size_t i = 0; i < mSlowFrameCounts.size(); i++) {
callback(HistogramEntry{frameTimeForSlowFrameCountIndex(i), mSlowFrameCounts[i]});
}
}
uint32_t ProfileData::findGPUPercentile(int percentile) const {
uint32_t totalGPUFrameCount = 0; // this is usually mTotalFrameCount - 3.
for (int i = mGPUFrameCounts.size() - 1; i >= 0; i--) {
totalGPUFrameCount += mGPUFrameCounts[i];
}
int pos = percentile * totalGPUFrameCount / 100;
int remaining = totalGPUFrameCount - pos;
for (int i = mGPUFrameCounts.size() - 1; i >= 0; i--) {
remaining -= mGPUFrameCounts[i];
if (remaining <= 0) {
return GPUFrameTimeForFrameCountIndex(i);
}
}
return 0;
}
uint32_t ProfileData::GPUFrameTimeForFrameCountIndex(uint32_t index) {
return index != 25 ? index + 1 : 4950;
}
void ProfileData::reportGPUFrame(int64_t duration) {
uint32_t index = static_cast<uint32_t>(ns2ms(duration));
if (index > 25) {
index = 25;
}
mGPUFrameCounts[index]++;
}
void ProfileData::histogramGPUForEach(const std::function<void(HistogramEntry)>& callback) const {
for (size_t i = 0; i < mGPUFrameCounts.size(); i++) {
callback(HistogramEntry{GPUFrameTimeForFrameCountIndex(i), mGPUFrameCounts[i]});
}
}
} /* namespace uirenderer */
} /* namespace android */
|