File: SkiaInterpolator.cpp

package info (click to toggle)
android-platform-frameworks-base 1%3A14~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 326,092 kB
  • sloc: java: 2,032,373; xml: 343,016; cpp: 304,181; python: 3,683; ansic: 2,090; sh: 1,871; makefile: 117; sed: 19
file content (273 lines) | stat: -rw-r--r-- 8,195 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "SkiaInterpolator.h"

#include "include/core/SkMath.h"
#include "include/private/SkFixed.h"
#include "include/private/SkMalloc.h"
#include "include/private/SkTo.h"
#include "src/core/SkTSearch.h"

typedef int Dot14;
#define Dot14_ONE (1 << 14)
#define Dot14_HALF (1 << 13)

#define Dot14ToFloat(x) ((x) / 16384.f)

static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
    return (a * b + Dot14_HALF) >> 14;
}

static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
    return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
}

static inline Dot14 pin_and_convert(float x) {
    if (x <= 0) {
        return 0;
    }
    if (x >= SK_Scalar1) {
        return Dot14_ONE;
    }
    return SkScalarToFixed(x) >> 2;
}

static float SkUnitCubicInterp(float value, float bx, float by, float cx, float cy) {
    // pin to the unit-square, and convert to 2.14
    Dot14 x = pin_and_convert(value);

    if (x == 0) return 0;
    if (x == Dot14_ONE) return SK_Scalar1;

    Dot14 b = pin_and_convert(bx);
    Dot14 c = pin_and_convert(cx);

    // Now compute our coefficients from the control points
    //  t   -> 3b
    //  t^2 -> 3c - 6b
    //  t^3 -> 3b - 3c + 1
    Dot14 A = 3 * b;
    Dot14 B = 3 * (c - 2 * b);
    Dot14 C = 3 * (b - c) + Dot14_ONE;

    // Now search for a t value given x
    Dot14 t = Dot14_HALF;
    Dot14 dt = Dot14_HALF;
    for (int i = 0; i < 13; i++) {
        dt >>= 1;
        Dot14 guess = eval_cubic(t, A, B, C);
        if (x < guess) {
            t -= dt;
        } else {
            t += dt;
        }
    }

    // Now we have t, so compute the coeff for Y and evaluate
    b = pin_and_convert(by);
    c = pin_and_convert(cy);
    A = 3 * b;
    B = 3 * (c - 2 * b);
    C = 3 * (b - c) + Dot14_ONE;
    return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
}

///////////////////////////////////////////////////////////////////////////////////////////////////

SkiaInterpolatorBase::SkiaInterpolatorBase() {
    fStorage = nullptr;
    fTimes = nullptr;
    SkDEBUGCODE(fTimesArray = nullptr;)
}

SkiaInterpolatorBase::~SkiaInterpolatorBase() {
    if (fStorage) {
        sk_free(fStorage);
    }
}

void SkiaInterpolatorBase::reset(int elemCount, int frameCount) {
    fFlags = 0;
    fElemCount = SkToU8(elemCount);
    fFrameCount = SkToS16(frameCount);
    fRepeat = SK_Scalar1;
    if (fStorage) {
        sk_free(fStorage);
        fStorage = nullptr;
        fTimes = nullptr;
        SkDEBUGCODE(fTimesArray = nullptr);
    }
}

/*  Each value[] run is formatted as:
        <time (in msec)>
        <blend>
        <data[fElemCount]>

    Totaling fElemCount+2 entries per keyframe
*/

bool SkiaInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
    if (fFrameCount == 0) {
        return false;
    }

    if (startTime) {
        *startTime = fTimes[0].fTime;
    }
    if (endTime) {
        *endTime = fTimes[fFrameCount - 1].fTime;
    }
    return true;
}

float SkiaInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime, SkMSec nextTime,
                                             const float blend[4]) {
    SkASSERT(time > prevTime && time < nextTime);

    float t = (float)(time - prevTime) / (float)(nextTime - prevTime);
    return blend ? SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
}

SkiaInterpolatorBase::Result SkiaInterpolatorBase::timeToT(SkMSec time, float* T, int* indexPtr,
                                                           bool* exactPtr) const {
    SkASSERT(fFrameCount > 0);
    Result result = kNormal_Result;
    if (fRepeat != SK_Scalar1) {
        SkMSec startTime = 0, endTime = 0;  // initialize to avoid warning
        this->getDuration(&startTime, &endTime);
        SkMSec totalTime = endTime - startTime;
        SkMSec offsetTime = time - startTime;
        endTime = SkScalarFloorToInt(fRepeat * totalTime);
        if (offsetTime >= endTime) {
            float fraction = SkScalarFraction(fRepeat);
            offsetTime = fraction == 0 && fRepeat > 0
                                 ? totalTime
                                 : (SkMSec)SkScalarFloorToInt(fraction * totalTime);
            result = kFreezeEnd_Result;
        } else {
            int mirror = fFlags & kMirror;
            offsetTime = offsetTime % (totalTime << mirror);
            if (offsetTime > totalTime) {  // can only be true if fMirror is true
                offsetTime = (totalTime << 1) - offsetTime;
            }
        }
        time = offsetTime + startTime;
    }

    int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time, sizeof(SkTimeCode));

    bool exact = true;

    if (index < 0) {
        index = ~index;
        if (index == 0) {
            result = kFreezeStart_Result;
        } else if (index == fFrameCount) {
            if (fFlags & kReset) {
                index = 0;
            } else {
                index -= 1;
            }
            result = kFreezeEnd_Result;
        } else {
            exact = false;
        }
    }
    SkASSERT(index < fFrameCount);
    const SkTimeCode* nextTime = &fTimes[index];
    SkMSec nextT = nextTime[0].fTime;
    if (exact) {
        *T = 0;
    } else {
        SkMSec prevT = nextTime[-1].fTime;
        *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
    }
    *indexPtr = index;
    *exactPtr = exact;
    return result;
}

SkiaInterpolator::SkiaInterpolator() {
    INHERITED::reset(0, 0);
    fValues = nullptr;
    SkDEBUGCODE(fScalarsArray = nullptr;)
}

SkiaInterpolator::SkiaInterpolator(int elemCount, int frameCount) {
    SkASSERT(elemCount > 0);
    this->reset(elemCount, frameCount);
}

void SkiaInterpolator::reset(int elemCount, int frameCount) {
    INHERITED::reset(elemCount, frameCount);
    fStorage = sk_malloc_throw((sizeof(float) * elemCount + sizeof(SkTimeCode)) * frameCount);
    fTimes = (SkTimeCode*)fStorage;
    fValues = (float*)((char*)fStorage + sizeof(SkTimeCode) * frameCount);
#ifdef SK_DEBUG
    fTimesArray = (SkTimeCode(*)[10])fTimes;
    fScalarsArray = (float(*)[10])fValues;
#endif
}

#define SK_Fixed1Third (SK_Fixed1 / 3)
#define SK_Fixed2Third (SK_Fixed1 * 2 / 3)

static const float gIdentityBlend[4] = {0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f};

bool SkiaInterpolator::setKeyFrame(int index, SkMSec time, const float values[],
                                   const float blend[4]) {
    SkASSERT(values != nullptr);

    if (blend == nullptr) {
        blend = gIdentityBlend;
    }

    bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time, sizeof(SkTimeCode));
    SkASSERT(success);
    if (success) {
        SkTimeCode* timeCode = &fTimes[index];
        timeCode->fTime = time;
        memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
        float* dst = &fValues[fElemCount * index];
        memcpy(dst, values, fElemCount * sizeof(float));
    }
    return success;
}

SkiaInterpolator::Result SkiaInterpolator::timeToValues(SkMSec time, float values[]) const {
    float T;
    int index;
    bool exact;
    Result result = timeToT(time, &T, &index, &exact);
    if (values) {
        const float* nextSrc = &fValues[index * fElemCount];

        if (exact) {
            memcpy(values, nextSrc, fElemCount * sizeof(float));
        } else {
            SkASSERT(index > 0);

            const float* prevSrc = nextSrc - fElemCount;

            for (int i = fElemCount - 1; i >= 0; --i) {
                values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
            }
        }
    }
    return result;
}