File: OpBuffer.h

package info (click to toggle)
android-platform-frameworks-base 1%3A14~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 326,092 kB
  • sloc: java: 2,032,373; xml: 343,016; cpp: 304,181; python: 3,683; ansic: 2,090; sh: 1,871; makefile: 117; sed: 19
file content (288 lines) | stat: -rw-r--r-- 9,101 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * Copyright (C) 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstddef>
#include <cstdlib>
#include <type_traits>
#include <utility>

namespace android::uirenderer {

template <typename T>
struct OpBufferItemHeader {
    T type : 8;
    uint32_t size : 24;
};

struct OpBufferAllocationHeader {
    // Used size, including header size
    size_t used = 0;
    // Capacity, including header size
    size_t capacity = 0;
    // Offset relative to `this` at which the first item is
    size_t startOffset = 0;
    // Offset relative to `this` at which the last item is
    size_t endOffset = 0;
};

#define BE_OPBUFFERS_FRIEND()                                      \
    template <typename ItemTypes, template <ItemTypes> typename, typename, typename> \
    friend class OpBuffer

template <typename ItemTypes, template <ItemTypes> typename ItemContainer,
          typename BufferHeader = OpBufferAllocationHeader,
          typename ItemTypesSequence = std::make_index_sequence<static_cast<int>(ItemTypes::COUNT)>>
class OpBuffer {
    // Instead of re-aligning individual inserts, just pad the size of everything
    // to a multiple of pointer alignment. This assumes we never work with doubles.
    // Which we don't.
    static constexpr size_t Alignment = alignof(void*);

    static constexpr size_t PadAlign(size_t size) {
        return (size + (Alignment - 1)) & -Alignment;
    }

public:
    static constexpr auto STARTING_SIZE = PadAlign(sizeof(BufferHeader));
    using ItemHeader = OpBufferItemHeader<ItemTypes>;

    explicit OpBuffer() = default;

    // Prevent copying by default
    OpBuffer(const OpBuffer&) = delete;
    void operator=(const OpBuffer&) = delete;

    OpBuffer(OpBuffer&& other) {
        mBuffer = other.mBuffer;
        other.mBuffer = nullptr;
    }

    void operator=(OpBuffer&& other) {
        destroy();
        mBuffer = other.mBuffer;
        other.mBuffer = nullptr;
    }

    ~OpBuffer() {
        destroy();
    }

    constexpr size_t capacity() const { return mBuffer ? mBuffer->capacity : 0; }

    constexpr size_t size() const { return mBuffer ? mBuffer->used : 0; }

    constexpr size_t remaining() const { return capacity() - size(); }

    // TODO: Add less-copy'ing variants of this. emplace_back? deferred initialization?
    template <ItemTypes T>
    void push_container(ItemContainer<T>&& op) {
        static_assert(alignof(ItemContainer<T>) <= Alignment);
        static_assert(offsetof(ItemContainer<T>, header) == 0);

        constexpr auto padded_size = PadAlign(sizeof(ItemContainer<T>));
        if (remaining() < padded_size) {
            resize(std::max(padded_size, capacity()) * 2);
        }
        mBuffer->endOffset = mBuffer->used;
        mBuffer->used += padded_size;

        void* allocateAt = reinterpret_cast<uint8_t*>(mBuffer) + mBuffer->endOffset;
        auto temp = new (allocateAt) ItemContainer<T>{std::move(op)};
        temp->header = {.type = T, .size = padded_size};
    }

    void resize(size_t newsize) {
        // Add the header size to newsize
        const size_t adjustedSize = newsize + STARTING_SIZE;

        if (adjustedSize < size()) {
            // todo: throw?
            return;
        }
        if (newsize == 0) {
            free(mBuffer);
            mBuffer = nullptr;
        } else {
            if (mBuffer) {
                mBuffer = reinterpret_cast<BufferHeader*>(realloc(mBuffer, adjustedSize));
                mBuffer->capacity = adjustedSize;
            } else {
                mBuffer = new (malloc(adjustedSize)) BufferHeader();
                mBuffer->capacity = adjustedSize;
                mBuffer->used = STARTING_SIZE;
                mBuffer->startOffset = STARTING_SIZE;
            }
        }
    }

    template <typename F>
    void for_each(F&& f) const {
        do_for_each(std::forward<F>(f), ItemTypesSequence{});
    }

    void clear();

    ItemHeader* first() const { return isEmpty() ? nullptr : itemAt(mBuffer->startOffset); }

    ItemHeader* last() const { return isEmpty() ? nullptr : itemAt(mBuffer->endOffset); }

    class sentinal {
    public:
        explicit sentinal(const uint8_t* end) : end(end) {}
    private:
        const uint8_t* const end;
    };

    sentinal end() const {
        return sentinal{end_ptr()};
    }

    template <ItemTypes T>
    class filtered_iterator {
    public:
        explicit filtered_iterator(uint8_t* start, const uint8_t* end)
                : mCurrent(start), mEnd(end) {
            ItemHeader* header = reinterpret_cast<ItemHeader*>(mCurrent);
            if (header->type != T) {
                advance();
            }
        }

        filtered_iterator& operator++() {
            advance();
            return *this;
        }

        // Although this iterator self-terminates, we need a placeholder to compare against
        // to make for-each loops happy
        bool operator!=(const sentinal& other) const {
            return mCurrent != mEnd;
        }

        ItemContainer<T>& operator*() {
            return *reinterpret_cast<ItemContainer<T>*>(mCurrent);
        }
    private:
        void advance() {
            ItemHeader* header = reinterpret_cast<ItemHeader*>(mCurrent);
            do {
                mCurrent += header->size;
                header = reinterpret_cast<ItemHeader*>(mCurrent);
            } while (mCurrent != mEnd && header->type != T);
        }
        uint8_t* mCurrent;
        const uint8_t* const mEnd;
    };

    template <ItemTypes T>
    class filtered_view {
    public:
        explicit filtered_view(uint8_t* start, const uint8_t* end) : mStart(start), mEnd(end) {}

        filtered_iterator<T> begin() const {
            return filtered_iterator<T>{mStart, mEnd};
        }

        sentinal end() const {
            return sentinal{mEnd};
        }
    private:
        uint8_t* mStart;
        const uint8_t* const mEnd;
    };

    template <ItemTypes T>
    filtered_view<T> filter() const {
        return filtered_view<T>{start_ptr(), end_ptr()};
    }

private:

    uint8_t* start_ptr() const {
        return reinterpret_cast<uint8_t*>(mBuffer) + mBuffer->startOffset;
    }

    const uint8_t* end_ptr() const {
        return reinterpret_cast<uint8_t*>(mBuffer) + mBuffer->used;
    }

    template <typename F, std::size_t... I>
    void do_for_each(F&& f, std::index_sequence<I...>) const {
        // Validate we're not empty
        if (isEmpty()) return;

        // Setup the jump table, mapping from each type to a springboard that invokes the template
        // function with the appropriate concrete type
        using F_PTR = decltype(&f);
        using THUNK = void (*)(F_PTR, void*);
        static constexpr auto jump = std::array<THUNK, sizeof...(I)>{[](F_PTR fp, void* t) {
            (*fp)(reinterpret_cast<const ItemContainer<static_cast<ItemTypes>(I)>*>(t));
        }...};

        // Do the actual iteration of each item
        uint8_t* current = start_ptr();
        const uint8_t* end = end_ptr();
        while (current != end) {
            auto header = reinterpret_cast<ItemHeader*>(current);
            // `f` could be a destructor, so ensure all accesses to the OP happen prior to invoking
            // `f`
            auto it = (void*)current;
            current += header->size;
            jump[static_cast<int>(header->type)](&f, it);
        }
    }

    void destroy() {
        clear();
        resize(0);
    }

    bool offsetIsValid(size_t offset) const {
        return offset >= mBuffer->startOffset && offset < mBuffer->used;
    }

    ItemHeader* itemAt(size_t offset) const {
        if (!offsetIsValid(offset)) return nullptr;
        return reinterpret_cast<ItemHeader*>(reinterpret_cast<uint8_t*>(mBuffer) + offset);
    }

    bool isEmpty() const { return mBuffer == nullptr || mBuffer->used == STARTING_SIZE; }

    BufferHeader* mBuffer = nullptr;
};

template <typename ItemTypes, template <ItemTypes> typename ItemContainer, typename BufferHeader,
        typename ItemTypeSequence>
void OpBuffer<ItemTypes, ItemContainer, BufferHeader, ItemTypeSequence>::clear() {

    // Don't need to do anything if we don't have a buffer
    if (!mBuffer) return;

    for_each([](auto op) {
        using T = std::remove_reference_t<decltype(*op)>;
        op->~T();
    });
    mBuffer->used = STARTING_SIZE;
    mBuffer->startOffset = STARTING_SIZE;
    mBuffer->endOffset = 0;
}

}  // namespace android::uirenderer