File: SkiaPipeline.cpp

package info (click to toggle)
android-platform-frameworks-base 1%3A14~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 326,092 kB
  • sloc: java: 2,032,373; xml: 343,016; cpp: 304,181; python: 3,683; ansic: 2,090; sh: 1,871; makefile: 117; sed: 19
file content (672 lines) | stat: -rw-r--r-- 29,306 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "SkiaPipeline.h"

#include <SkImageEncoder.h>
#include <SkImageInfo.h>
#include <SkImagePriv.h>
#include <SkMultiPictureDocument.h>
#include <SkOverdrawCanvas.h>
#include <SkOverdrawColorFilter.h>
#include <SkPicture.h>
#include <SkPictureRecorder.h>
#include <SkSerialProcs.h>
#include <SkTypeface.h>
#include <android-base/properties.h>
#include <unistd.h>

#include <sstream>

#include <gui/TraceUtils.h>
#include "LightingInfo.h"
#include "VectorDrawable.h"
#include "thread/CommonPool.h"
#include "tools/SkSharingProc.h"
#include "utils/Color.h"
#include "utils/String8.h"

using namespace android::uirenderer::renderthread;

namespace android {
namespace uirenderer {
namespace skiapipeline {

SkiaPipeline::SkiaPipeline(RenderThread& thread) : mRenderThread(thread) {
    setSurfaceColorProperties(mColorMode);
}

SkiaPipeline::~SkiaPipeline() {
    unpinImages();
}

void SkiaPipeline::onDestroyHardwareResources() {
    unpinImages();
    mRenderThread.cacheManager().trimStaleResources();
}

bool SkiaPipeline::pinImages(std::vector<SkImage*>& mutableImages) {
    if (!mRenderThread.getGrContext()) {
        ALOGD("Trying to pin an image with an invalid GrContext");
        return false;
    }
    for (SkImage* image : mutableImages) {
        if (SkImage_pinAsTexture(image, mRenderThread.getGrContext())) {
            mPinnedImages.emplace_back(sk_ref_sp(image));
        } else {
            return false;
        }
    }
    return true;
}

void SkiaPipeline::unpinImages() {
    for (auto& image : mPinnedImages) {
        SkImage_unpinAsTexture(image.get(), mRenderThread.getGrContext());
    }
    mPinnedImages.clear();
}

void SkiaPipeline::renderLayers(const LightGeometry& lightGeometry,
                                LayerUpdateQueue* layerUpdateQueue, bool opaque,
                                const LightInfo& lightInfo) {
    LightingInfo::updateLighting(lightGeometry, lightInfo);
    ATRACE_NAME("draw layers");
    renderLayersImpl(*layerUpdateQueue, opaque);
    layerUpdateQueue->clear();
}

void SkiaPipeline::renderLayersImpl(const LayerUpdateQueue& layers, bool opaque) {
    sk_sp<GrDirectContext> cachedContext;

    // Render all layers that need to be updated, in order.
    for (size_t i = 0; i < layers.entries().size(); i++) {
        RenderNode* layerNode = layers.entries()[i].renderNode.get();
        // only schedule repaint if node still on layer - possible it may have been
        // removed during a dropped frame, but layers may still remain scheduled so
        // as not to lose info on what portion is damaged
        if (CC_UNLIKELY(layerNode->getLayerSurface() == nullptr)) {
            continue;
        }
        SkASSERT(layerNode->getLayerSurface());
        SkiaDisplayList* displayList = layerNode->getDisplayList().asSkiaDl();
        if (!displayList || displayList->isEmpty()) {
            ALOGE("%p drawLayers(%s) : missing drawable", layerNode, layerNode->getName());
            return;
        }

        const Rect& layerDamage = layers.entries()[i].damage;

        SkCanvas* layerCanvas = layerNode->getLayerSurface()->getCanvas();

        int saveCount = layerCanvas->save();
        SkASSERT(saveCount == 1);

        layerCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect());

        // TODO: put localized light center calculation and storage to a drawable related code.
        // It does not seem right to store something localized in a global state
        // fix here and in recordLayers
        const Vector3 savedLightCenter(LightingInfo::getLightCenterRaw());
        Vector3 transformedLightCenter(savedLightCenter);
        // map current light center into RenderNode's coordinate space
        layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(transformedLightCenter);
        LightingInfo::setLightCenterRaw(transformedLightCenter);

        const RenderProperties& properties = layerNode->properties();
        const SkRect bounds = SkRect::MakeWH(properties.getWidth(), properties.getHeight());
        if (properties.getClipToBounds() && layerCanvas->quickReject(bounds)) {
            return;
        }

        ATRACE_FORMAT("drawLayer [%s] %.1f x %.1f", layerNode->getName(), bounds.width(),
                      bounds.height());

        layerNode->getSkiaLayer()->hasRenderedSinceRepaint = false;
        layerCanvas->clear(SK_ColorTRANSPARENT);

        RenderNodeDrawable root(layerNode, layerCanvas, false);
        root.forceDraw(layerCanvas);
        layerCanvas->restoreToCount(saveCount);

        LightingInfo::setLightCenterRaw(savedLightCenter);

        // cache the current context so that we can defer flushing it until
        // either all the layers have been rendered or the context changes
        GrDirectContext* currentContext =
            GrAsDirectContext(layerNode->getLayerSurface()->getCanvas()->recordingContext());
        if (cachedContext.get() != currentContext) {
            if (cachedContext.get()) {
                ATRACE_NAME("flush layers (context changed)");
                cachedContext->flushAndSubmit();
            }
            cachedContext.reset(SkSafeRef(currentContext));
        }
    }

    if (cachedContext.get()) {
        ATRACE_NAME("flush layers");
        cachedContext->flushAndSubmit();
    }
}

bool SkiaPipeline::createOrUpdateLayer(RenderNode* node, const DamageAccumulator& damageAccumulator,
                                       ErrorHandler* errorHandler) {
    // compute the size of the surface (i.e. texture) to be allocated for this layer
    const int surfaceWidth = ceilf(node->getWidth() / float(LAYER_SIZE)) * LAYER_SIZE;
    const int surfaceHeight = ceilf(node->getHeight() / float(LAYER_SIZE)) * LAYER_SIZE;

    SkSurface* layer = node->getLayerSurface();
    if (!layer || layer->width() != surfaceWidth || layer->height() != surfaceHeight) {
        SkImageInfo info;
        info = SkImageInfo::Make(surfaceWidth, surfaceHeight, getSurfaceColorType(),
                                 kPremul_SkAlphaType, getSurfaceColorSpace());
        SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
        SkASSERT(mRenderThread.getGrContext() != nullptr);
        node->setLayerSurface(SkSurface::MakeRenderTarget(mRenderThread.getGrContext(),
                                                          SkBudgeted::kYes, info, 0,
                                                          this->getSurfaceOrigin(), &props));
        if (node->getLayerSurface()) {
            // update the transform in window of the layer to reset its origin wrt light source
            // position
            Matrix4 windowTransform;
            damageAccumulator.computeCurrentTransform(&windowTransform);
            node->getSkiaLayer()->inverseTransformInWindow.loadInverse(windowTransform);
        } else {
            String8 cachesOutput;
            mRenderThread.cacheManager().dumpMemoryUsage(cachesOutput,
                                                         &mRenderThread.renderState());
            ALOGE("%s", cachesOutput.string());
            if (errorHandler) {
                std::ostringstream err;
                err << "Unable to create layer for " << node->getName();
                const int maxTextureSize = DeviceInfo::get()->maxTextureSize();
                err << ", size " << info.width() << "x" << info.height() << " max size "
                    << maxTextureSize << " color type " << (int)info.colorType() << " has context "
                    << (int)(mRenderThread.getGrContext() != nullptr);
                errorHandler->onError(err.str());
            }
        }
        return true;
    }
    return false;
}

void SkiaPipeline::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
    GrDirectContext* context = thread.getGrContext();
    if (context && !bitmap->isHardware()) {
        ATRACE_FORMAT("Bitmap#prepareToDraw %dx%d", bitmap->width(), bitmap->height());
        auto image = bitmap->makeImage();
        if (image.get()) {
            SkImage_pinAsTexture(image.get(), context);
            SkImage_unpinAsTexture(image.get(), context);
            // A submit is necessary as there may not be a frame coming soon, so without a call
            // to submit these texture uploads can just sit in the queue building up until
            // we run out of RAM
            context->flushAndSubmit();
        }
    }
}

static void savePictureAsync(const sk_sp<SkData>& data, const std::string& filename) {
    CommonPool::post([data, filename] {
        if (0 == access(filename.c_str(), F_OK)) {
            return;
        }

        SkFILEWStream stream(filename.c_str());
        if (stream.isValid()) {
            stream.write(data->data(), data->size());
            stream.flush();
            ALOGD("SKP Captured Drawing Output (%zu bytes) for frame. %s", stream.bytesWritten(),
                     filename.c_str());
        }
    });
}

// Note multiple SkiaPipeline instances may be loaded if more than one app is visible.
// Each instance may observe the filename changing and try to record to a file of the same name.
// Only the first one will succeed. There is no scope available here where we could coordinate
// to cause this function to return true for only one of the instances.
bool SkiaPipeline::shouldStartNewFileCapture() {
    // Don't start a new file based capture if one is currently ongoing.
    if (mCaptureMode != CaptureMode::None) { return false; }

    // A new capture is started when the filename property changes.
    // Read the filename property.
    std::string prop = base::GetProperty(PROPERTY_CAPTURE_SKP_FILENAME, "0");
    // if the filename property changed to a valid value
    if (prop[0] != '0' && mCapturedFile != prop) {
        // remember this new filename
        mCapturedFile = prop;
        // and get a property indicating how many frames to capture.
        mCaptureSequence = base::GetIntProperty(PROPERTY_CAPTURE_SKP_FRAMES, 1);
        if (mCaptureSequence <= 0) {
            return false;
        } else if (mCaptureSequence == 1) {
            mCaptureMode = CaptureMode::SingleFrameSKP;
        } else {
            mCaptureMode = CaptureMode::MultiFrameSKP;
        }
        return true;
    }
    return false;
}

// performs the first-frame work of a multi frame SKP capture. Returns true if successful.
bool SkiaPipeline::setupMultiFrameCapture() {
    ALOGD("Set up multi-frame capture, frames = %d", mCaptureSequence);
    // We own this stream and need to hold it until close() finishes.
    auto stream = std::make_unique<SkFILEWStream>(mCapturedFile.c_str());
    if (stream->isValid()) {
        mOpenMultiPicStream = std::move(stream);
        mSerialContext.reset(new SkSharingSerialContext());
        SkSerialProcs procs;
        procs.fImageProc = SkSharingSerialContext::serializeImage;
        procs.fImageCtx = mSerialContext.get();
        procs.fTypefaceProc = [](SkTypeface* tf, void* ctx){
            return tf->serialize(SkTypeface::SerializeBehavior::kDoIncludeData);
        };
        // SkDocuments don't take owership of the streams they write.
        // we need to keep it until after mMultiPic.close()
        // procs is passed as a pointer, but just as a method of having an optional default.
        // procs doesn't need to outlive this Make call.
        mMultiPic = SkMakeMultiPictureDocument(mOpenMultiPicStream.get(), &procs,
            [sharingCtx = mSerialContext.get()](const SkPicture* pic) {
                    SkSharingSerialContext::collectNonTextureImagesFromPicture(pic, sharingCtx);
            });
        return true;
    } else {
        ALOGE("Could not open \"%s\" for writing.", mCapturedFile.c_str());
        mCaptureSequence = 0;
        mCaptureMode = CaptureMode::None;
        return false;
    }
}

// recurse through the rendernode's children, add any nodes which are layers to the queue.
static void collectLayers(RenderNode* node, LayerUpdateQueue* layers) {
    SkiaDisplayList* dl = node->getDisplayList().asSkiaDl();
    if (dl) {
        const auto& prop = node->properties();
        if (node->hasLayer()) {
            layers->enqueueLayerWithDamage(node, Rect(prop.getWidth(), prop.getHeight()));
        }
        // The way to recurse through rendernodes is to call this with a lambda.
        dl->updateChildren([&](RenderNode* child) { collectLayers(child, layers); });
    }
}

// record the provided layers to the provided canvas as self-contained skpictures.
static void recordLayers(const LayerUpdateQueue& layers,
    SkCanvas* mskpCanvas) {
    const Vector3 savedLightCenter(LightingInfo::getLightCenterRaw());
    // Record the commands to re-draw each dirty layer into an SkPicture
    for (size_t i = 0; i < layers.entries().size(); i++) {
        RenderNode* layerNode = layers.entries()[i].renderNode.get();
        const Rect& layerDamage = layers.entries()[i].damage;
        const RenderProperties& properties = layerNode->properties();

        // Temporarily map current light center into RenderNode's coordinate space
        Vector3 transformedLightCenter(savedLightCenter);
        layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(transformedLightCenter);
        LightingInfo::setLightCenterRaw(transformedLightCenter);

        SkPictureRecorder layerRec;
        auto* recCanvas = layerRec.beginRecording(properties.getWidth(),
            properties.getHeight());
        // This is not recorded but still causes clipping.
        recCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect());
        RenderNodeDrawable root(layerNode, recCanvas, false);
        root.forceDraw(recCanvas);
        // Now write this picture into the SKP canvas with an annotation indicating what it is
        mskpCanvas->drawAnnotation(layerDamage.toSkRect(), String8::format(
            "OffscreenLayerDraw|%" PRId64, layerNode->uniqueId()).c_str(), nullptr);
        mskpCanvas->drawPicture(layerRec.finishRecordingAsPicture());
    }
    LightingInfo::setLightCenterRaw(savedLightCenter);
}

SkCanvas* SkiaPipeline::tryCapture(SkSurface* surface, RenderNode* root,
    const LayerUpdateQueue& dirtyLayers) {
    if (CC_LIKELY(!Properties::skpCaptureEnabled)) {
        return surface->getCanvas(); // Bail out early when capture is not turned on.
    }
    // Note that shouldStartNewFileCapture tells us if this is the *first* frame of a capture.
    bool firstFrameOfAnim = false;
    if (shouldStartNewFileCapture() && mCaptureMode == CaptureMode::MultiFrameSKP) {
        // set a reminder to record every layer near the end of this method, after we have set up
        // the nway canvas.
        firstFrameOfAnim = true;
        if (!setupMultiFrameCapture()) {
            return surface->getCanvas();
        }
    }

    // Create a canvas pointer, fill it depending on what kind of capture is requested (if any)
    SkCanvas* pictureCanvas = nullptr;
    switch (mCaptureMode) {
        case CaptureMode::CallbackAPI:
        case CaptureMode::SingleFrameSKP:
            mRecorder.reset(new SkPictureRecorder());
            pictureCanvas = mRecorder->beginRecording(surface->width(), surface->height());
            break;
        case CaptureMode::MultiFrameSKP:
            // If a multi frame recording is active, initialize recording for a single frame of a
            // multi frame file.
            pictureCanvas = mMultiPic->beginPage(surface->width(), surface->height());
            break;
        case CaptureMode::None:
            // Returning here in the non-capture case means we can count on pictureCanvas being
            // non-null below.
            return surface->getCanvas();
    }

    // Setting up an nway canvas is common to any kind of capture.
    mNwayCanvas = std::make_unique<SkNWayCanvas>(surface->width(), surface->height());
    mNwayCanvas->addCanvas(surface->getCanvas());
    mNwayCanvas->addCanvas(pictureCanvas);

    if (firstFrameOfAnim) {
        // On the first frame of any mskp capture we want to record any layers that are needed in
        // frame but may have been rendered offscreen before recording began.
        // We do not maintain a list of all layers, since it isn't needed outside this rare,
        // recording use case. Traverse the tree to find them and put them in this LayerUpdateQueue.
        LayerUpdateQueue luq;
        collectLayers(root, &luq);
        recordLayers(luq, mNwayCanvas.get());
    } else {
        // on non-first frames, we record any normal layer draws (dirty regions)
        recordLayers(dirtyLayers, mNwayCanvas.get());
    }

    return mNwayCanvas.get();
}

void SkiaPipeline::endCapture(SkSurface* surface) {
    if (CC_LIKELY(mCaptureMode == CaptureMode::None)) { return; }
    mNwayCanvas.reset();
    ATRACE_CALL();
    if (mCaptureSequence > 0 && mCaptureMode == CaptureMode::MultiFrameSKP) {
        mMultiPic->endPage();
        mCaptureSequence--;
        if (mCaptureSequence == 0) {
            mCaptureMode = CaptureMode::None;
            // Pass mMultiPic and mOpenMultiPicStream to a background thread, which will handle
            // the heavyweight serialization work and destroy them. mOpenMultiPicStream is released
            // to a bare pointer because keeping it in a smart pointer makes the lambda
            // non-copyable. The lambda is only called once, so this is safe.
            SkFILEWStream* stream = mOpenMultiPicStream.release();
            CommonPool::post([doc = std::move(mMultiPic), stream]{
                ALOGD("Finalizing multi frame SKP");
                doc->close();
                delete stream;
                ALOGD("Multi frame SKP complete.");
            });
        }
    } else {
        sk_sp<SkPicture> picture = mRecorder->finishRecordingAsPicture();
        if (picture->approximateOpCount() > 0) {
            if (mPictureCapturedCallback) {
                std::invoke(mPictureCapturedCallback, std::move(picture));
            } else {
                // single frame skp to file
                SkSerialProcs procs;
                procs.fTypefaceProc = [](SkTypeface* tf, void* ctx){
                    return tf->serialize(SkTypeface::SerializeBehavior::kDoIncludeData);
                };
                auto data = picture->serialize(&procs);
                savePictureAsync(data, mCapturedFile);
                mCaptureSequence = 0;
                mCaptureMode = CaptureMode::None;
            }
        }
        mRecorder.reset();
    }
}

void SkiaPipeline::renderFrame(const LayerUpdateQueue& layers, const SkRect& clip,
                               const std::vector<sp<RenderNode>>& nodes, bool opaque,
                               const Rect& contentDrawBounds, sk_sp<SkSurface> surface,
                               const SkMatrix& preTransform) {
    bool previousSkpEnabled = Properties::skpCaptureEnabled;
    if (mPictureCapturedCallback) {
        Properties::skpCaptureEnabled = true;
    }

    // Initialize the canvas for the current frame, that might be a recording canvas if SKP
    // capture is enabled.
    SkCanvas* canvas = tryCapture(surface.get(), nodes[0].get(), layers);

    // draw all layers up front
    renderLayersImpl(layers, opaque);

    renderFrameImpl(clip, nodes, opaque, contentDrawBounds, canvas, preTransform);

    endCapture(surface.get());

    if (CC_UNLIKELY(Properties::debugOverdraw)) {
        renderOverdraw(clip, nodes, contentDrawBounds, surface, preTransform);
    }

    Properties::skpCaptureEnabled = previousSkpEnabled;
}

namespace {
static Rect nodeBounds(RenderNode& node) {
    auto& props = node.properties();
    return Rect(props.getLeft(), props.getTop(), props.getRight(), props.getBottom());
}
}  // namespace

void SkiaPipeline::renderFrameImpl(const SkRect& clip,
                                   const std::vector<sp<RenderNode>>& nodes, bool opaque,
                                   const Rect& contentDrawBounds, SkCanvas* canvas,
                                   const SkMatrix& preTransform) {
    SkAutoCanvasRestore saver(canvas, true);
    auto clipRestriction = preTransform.mapRect(clip).roundOut();
    if (CC_UNLIKELY(isCapturingSkp())) {
        canvas->drawAnnotation(SkRect::Make(clipRestriction), "AndroidDeviceClipRestriction",
            nullptr);
    } else {
        // clip drawing to dirty region only when not recording SKP files (which should contain all
        // draw ops on every frame)
        canvas->androidFramework_setDeviceClipRestriction(clipRestriction);
    }
    canvas->concat(preTransform);

    // STOPSHIP: Revert, temporary workaround to clear always F16 frame buffer for b/74976293
    if (!opaque || getSurfaceColorType() == kRGBA_F16_SkColorType) {
        canvas->clear(SK_ColorTRANSPARENT);
    }

    if (1 == nodes.size()) {
        if (!nodes[0]->nothingToDraw()) {
            RenderNodeDrawable root(nodes[0].get(), canvas);
            root.draw(canvas);
        }
    } else if (0 == nodes.size()) {
        // nothing to draw
    } else {
        // It there are multiple render nodes, they are laid out as follows:
        // #0 - backdrop (content + caption)
        // #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop)
        // #2 - additional overlay nodes
        // Usually the backdrop cannot be seen since it will be entirely covered by the content.
        // While
        // resizing however it might become partially visible. The following render loop will crop
        // the
        // backdrop against the content and draw the remaining part of it. It will then draw the
        // content
        // cropped to the backdrop (since that indicates a shrinking of the window).
        //
        // Additional nodes will be drawn on top with no particular clipping semantics.

        // Usually the contents bounds should be mContentDrawBounds - however - we will
        // move it towards the fixed edge to give it a more stable appearance (for the moment).
        // If there is no content bounds we ignore the layering as stated above and start with 2.

        // Backdrop bounds in render target space
        const Rect backdrop = nodeBounds(*nodes[0]);

        // Bounds that content will fill in render target space (note content node bounds may be
        // bigger)
        Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight());
        content.translate(backdrop.left, backdrop.top);
        if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) {
            // Content doesn't entirely overlap backdrop, so fill around content (right/bottom)

            // Note: in the future, if content doesn't snap to backdrop's left/top, this may need to
            // also fill left/top. Currently, both 2up and freeform position content at the top/left
            // of
            // the backdrop, so this isn't necessary.
            RenderNodeDrawable backdropNode(nodes[0].get(), canvas);
            if (content.right < backdrop.right) {
                // draw backdrop to right side of content
                SkAutoCanvasRestore acr(canvas, true);
                canvas->clipRect(SkRect::MakeLTRB(content.right, backdrop.top, backdrop.right,
                                                  backdrop.bottom));
                backdropNode.draw(canvas);
            }
            if (content.bottom < backdrop.bottom) {
                // draw backdrop to bottom of content
                // Note: bottom fill uses content left/right, to avoid overdrawing left/right fill
                SkAutoCanvasRestore acr(canvas, true);
                canvas->clipRect(SkRect::MakeLTRB(content.left, content.bottom, content.right,
                                                  backdrop.bottom));
                backdropNode.draw(canvas);
            }
        }

        RenderNodeDrawable contentNode(nodes[1].get(), canvas);
        if (!backdrop.isEmpty()) {
            // content node translation to catch up with backdrop
            float dx = backdrop.left - contentDrawBounds.left;
            float dy = backdrop.top - contentDrawBounds.top;

            SkAutoCanvasRestore acr(canvas, true);
            canvas->translate(dx, dy);
            const SkRect contentLocalClip =
                    SkRect::MakeXYWH(contentDrawBounds.left, contentDrawBounds.top,
                                     backdrop.getWidth(), backdrop.getHeight());
            canvas->clipRect(contentLocalClip);
            contentNode.draw(canvas);
        } else {
            SkAutoCanvasRestore acr(canvas, true);
            contentNode.draw(canvas);
        }

        // remaining overlay nodes, simply defer
        for (size_t index = 2; index < nodes.size(); index++) {
            if (!nodes[index]->nothingToDraw()) {
                SkAutoCanvasRestore acr(canvas, true);
                RenderNodeDrawable overlayNode(nodes[index].get(), canvas);
                overlayNode.draw(canvas);
            }
        }
    }
}

void SkiaPipeline::dumpResourceCacheUsage() const {
    int resources;
    size_t bytes;
    mRenderThread.getGrContext()->getResourceCacheUsage(&resources, &bytes);
    size_t maxBytes = mRenderThread.getGrContext()->getResourceCacheLimit();

    SkString log("Resource Cache Usage:\n");
    log.appendf("%8d items\n", resources);
    log.appendf("%8zu bytes (%.2f MB) out of %.2f MB maximum\n", bytes,
                bytes * (1.0f / (1024.0f * 1024.0f)), maxBytes * (1.0f / (1024.0f * 1024.0f)));

    ALOGD("%s", log.c_str());
}

void SkiaPipeline::setSurfaceColorProperties(ColorMode colorMode) {
    mColorMode = colorMode;
    switch (colorMode) {
        case ColorMode::Default:
            mSurfaceColorType = SkColorType::kN32_SkColorType;
            mSurfaceColorSpace = SkColorSpace::MakeSRGB();
            break;
        case ColorMode::WideColorGamut:
            mSurfaceColorType = DeviceInfo::get()->getWideColorType();
            mSurfaceColorSpace = DeviceInfo::get()->getWideColorSpace();
            break;
        case ColorMode::Hdr:
            mSurfaceColorType = SkColorType::kRGBA_F16_SkColorType;
            mSurfaceColorSpace = SkColorSpace::MakeRGB(GetPQSkTransferFunction(), SkNamedGamut::kRec2020);
            break;
        case ColorMode::Hdr10:
            mSurfaceColorType = SkColorType::kRGBA_1010102_SkColorType;
            mSurfaceColorSpace = SkColorSpace::MakeRGB(GetPQSkTransferFunction(), SkNamedGamut::kRec2020);
            break;
        case ColorMode::A8:
            mSurfaceColorType = SkColorType::kAlpha_8_SkColorType;
            mSurfaceColorSpace = nullptr;
            break;
    }
}

// Overdraw debugging

// These colors should be kept in sync with Caches::getOverdrawColor() with a few differences.
// This implementation requires transparent entries for "no overdraw" and "single draws".
static const SkColor kOverdrawColors[2][6] = {
    {
        0x00000000,
        0x00000000,
        0x2f0000ff,
        0x2f00ff00,
        0x3fff0000,
        0x7fff0000,
    },
    {
        0x00000000,
        0x00000000,
        0x2f0000ff,
        0x4fffff00,
        0x5fff89d7,
        0x7fff0000,
    },
};

void SkiaPipeline::renderOverdraw(const SkRect& clip,
                                  const std::vector<sp<RenderNode>>& nodes,
                                  const Rect& contentDrawBounds, sk_sp<SkSurface> surface,
                                  const SkMatrix& preTransform) {
    // Set up the overdraw canvas.
    SkImageInfo offscreenInfo = SkImageInfo::MakeA8(surface->width(), surface->height());
    sk_sp<SkSurface> offscreen = surface->makeSurface(offscreenInfo);
    LOG_ALWAYS_FATAL_IF(!offscreen, "Failed to create offscreen SkSurface for overdraw viz.");
    SkOverdrawCanvas overdrawCanvas(offscreen->getCanvas());

    // Fake a redraw to replay the draw commands.  This will increment the alpha channel
    // each time a pixel would have been drawn.
    // Pass true for opaque so we skip the clear - the overdrawCanvas is already zero
    // initialized.
    renderFrameImpl(clip, nodes, true, contentDrawBounds, &overdrawCanvas, preTransform);
    sk_sp<SkImage> counts = offscreen->makeImageSnapshot();

    // Draw overdraw colors to the canvas.  The color filter will convert counts to colors.
    SkPaint paint;
    const SkColor* colors = kOverdrawColors[static_cast<int>(Properties::overdrawColorSet)];
    paint.setColorFilter(SkOverdrawColorFilter::MakeWithSkColors(colors));
    surface->getCanvas()->drawImage(counts.get(), 0.0f, 0.0f, SkSamplingOptions(), &paint);
}

} /* namespace skiapipeline */
} /* namespace uirenderer */
} /* namespace android */