1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.opengl;
import androidx.annotation.NonNull;
/**
* Matrix math utilities. These methods operate on OpenGL ES format
* matrices and vectors stored in float arrays.
* <p>
* Matrices are 4 x 4 column-vector matrices stored in column-major
* order:
* <pre>
* m[offset + 0] m[offset + 4] m[offset + 8] m[offset + 12]
* m[offset + 1] m[offset + 5] m[offset + 9] m[offset + 13]
* m[offset + 2] m[offset + 6] m[offset + 10] m[offset + 14]
* m[offset + 3] m[offset + 7] m[offset + 11] m[offset + 15]</pre>
*
* Vectors are 4 x 1 column vectors stored in order:
* <pre>
* v[offset + 0]
* v[offset + 1]
* v[offset + 2]
* v[offset + 3]</pre>
*/
public class Matrix {
/** Temporary memory for operations that need temporary matrix data. */
private static final ThreadLocal<float[]> ThreadTmp = new ThreadLocal() {
@Override protected float[] initialValue() {
return new float[32];
}
};
/**
* @deprecated All methods are static, do not instantiate this class.
*/
@Deprecated
public Matrix() {}
private static boolean overlap(
float[] a, int aStart, int aLength, float[] b, int bStart, int bLength) {
if (a != b) {
return false;
}
if (aStart == bStart) {
return true;
}
int aEnd = aStart + aLength;
int bEnd = bStart + bLength;
if (aEnd == bEnd) {
return true;
}
if (aStart < bStart && bStart < aEnd) {
return true;
}
if (aStart < bEnd && bEnd < aEnd) {
return true;
}
if (bStart < aStart && aStart < bEnd) {
return true;
}
if (bStart < aEnd && aEnd < bEnd) {
return true;
}
return false;
}
/**
* Multiplies two 4x4 matrices together and stores the result in a third 4x4
* matrix. In matrix notation: result = lhs x rhs. Due to the way
* matrix multiplication works, the result matrix will have the same
* effect as first multiplying by the rhs matrix, then multiplying by
* the lhs matrix. This is the opposite of what you might expect.
* <p>
* The same float array may be passed for result, lhs, and/or rhs. This
* operation is expected to do the correct thing if the result elements
* overlap with either of the lhs or rhs elements.
*
* @param result The float array that holds the result.
* @param resultOffset The offset into the result array where the result is
* stored.
* @param lhs The float array that holds the left-hand-side matrix.
* @param lhsOffset The offset into the lhs array where the lhs is stored
* @param rhs The float array that holds the right-hand-side matrix.
* @param rhsOffset The offset into the rhs array where the rhs is stored.
*
* @throws IllegalArgumentException under any of the following conditions:
* result, lhs, or rhs are null;
* resultOffset + 16 > result.length
* or lhsOffset + 16 > lhs.length
* or rhsOffset + 16 > rhs.length;
* resultOffset < 0 or lhsOffset < 0 or rhsOffset < 0
*/
public static void multiplyMM(float[] result, int resultOffset,
float[] lhs, int lhsOffset, float[] rhs, int rhsOffset) {
// error checking
if (result == null) {
throw new IllegalArgumentException("result == null");
}
if (lhs == null) {
throw new IllegalArgumentException("lhs == null");
}
if (rhs == null) {
throw new IllegalArgumentException("rhs == null");
}
if (resultOffset < 0) {
throw new IllegalArgumentException("resultOffset < 0");
}
if (lhsOffset < 0) {
throw new IllegalArgumentException("lhsOffset < 0");
}
if (rhsOffset < 0) {
throw new IllegalArgumentException("rhsOffset < 0");
}
if (result.length < resultOffset + 16) {
throw new IllegalArgumentException("result.length < resultOffset + 16");
}
if (lhs.length < lhsOffset + 16) {
throw new IllegalArgumentException("lhs.length < lhsOffset + 16");
}
if (rhs.length < rhsOffset + 16) {
throw new IllegalArgumentException("rhs.length < rhsOffset + 16");
}
// Check for overlap between rhs and result or lhs and result
if ( overlap(result, resultOffset, 16, lhs, lhsOffset, 16)
|| overlap(result, resultOffset, 16, rhs, rhsOffset, 16) ) {
float[] tmp = ThreadTmp.get();
for (int i=0; i<4; i++) {
final float rhs_i0 = rhs[ 4*i + 0 + rhsOffset ];
float ri0 = lhs[ 0 + lhsOffset ] * rhs_i0;
float ri1 = lhs[ 1 + lhsOffset ] * rhs_i0;
float ri2 = lhs[ 2 + lhsOffset ] * rhs_i0;
float ri3 = lhs[ 3 + lhsOffset ] * rhs_i0;
for (int j=1; j<4; j++) {
final float rhs_ij = rhs[ 4*i + j + rhsOffset];
ri0 += lhs[ 4*j + 0 + lhsOffset ] * rhs_ij;
ri1 += lhs[ 4*j + 1 + lhsOffset ] * rhs_ij;
ri2 += lhs[ 4*j + 2 + lhsOffset ] * rhs_ij;
ri3 += lhs[ 4*j + 3 + lhsOffset ] * rhs_ij;
}
tmp[ 4*i + 0 ] = ri0;
tmp[ 4*i + 1 ] = ri1;
tmp[ 4*i + 2 ] = ri2;
tmp[ 4*i + 3 ] = ri3;
}
// copy from tmp to result
for (int i=0; i < 16; i++) {
result[ i + resultOffset ] = tmp[ i ];
}
} else {
for (int i=0; i<4; i++) {
final float rhs_i0 = rhs[ 4*i + 0 + rhsOffset ];
float ri0 = lhs[ 0 + lhsOffset ] * rhs_i0;
float ri1 = lhs[ 1 + lhsOffset ] * rhs_i0;
float ri2 = lhs[ 2 + lhsOffset ] * rhs_i0;
float ri3 = lhs[ 3 + lhsOffset ] * rhs_i0;
for (int j=1; j<4; j++) {
final float rhs_ij = rhs[ 4*i + j + rhsOffset];
ri0 += lhs[ 4*j + 0 + lhsOffset ] * rhs_ij;
ri1 += lhs[ 4*j + 1 + lhsOffset ] * rhs_ij;
ri2 += lhs[ 4*j + 2 + lhsOffset ] * rhs_ij;
ri3 += lhs[ 4*j + 3 + lhsOffset ] * rhs_ij;
}
result[ 4*i + 0 + resultOffset ] = ri0;
result[ 4*i + 1 + resultOffset ] = ri1;
result[ 4*i + 2 + resultOffset ] = ri2;
result[ 4*i + 3 + resultOffset ] = ri3;
}
}
}
/**
* Multiplies a 4 element vector by a 4x4 matrix and stores the result in a
* 4-element column vector. In matrix notation: result = lhs x rhs
* <p>
* The same float array may be passed for resultVec, lhsMat, and/or rhsVec.
* This operation is expected to do the correct thing if the result elements
* overlap with either of the lhs or rhs elements.
*
* @param resultVec The float array that holds the result vector.
* @param resultVecOffset The offset into the result array where the result
* vector is stored.
* @param lhsMat The float array that holds the left-hand-side matrix.
* @param lhsMatOffset The offset into the lhs array where the lhs is stored
* @param rhsVec The float array that holds the right-hand-side vector.
* @param rhsVecOffset The offset into the rhs vector where the rhs vector
* is stored.
*
* @throws IllegalArgumentException under any of the following conditions:
* resultVec, lhsMat, or rhsVec are null;
* resultVecOffset + 4 > resultVec.length
* or lhsMatOffset + 16 > lhsMat.length
* or rhsVecOffset + 4 > rhsVec.length;
* resultVecOffset < 0 or lhsMatOffset < 0 or rhsVecOffset < 0
*/
public static void multiplyMV(float[] resultVec,
int resultVecOffset, float[] lhsMat, int lhsMatOffset,
float[] rhsVec, int rhsVecOffset) {
// error checking
if (resultVec == null) {
throw new IllegalArgumentException("resultVec == null");
}
if (lhsMat == null) {
throw new IllegalArgumentException("lhsMat == null");
}
if (rhsVec == null) {
throw new IllegalArgumentException("rhsVec == null");
}
if (resultVecOffset < 0) {
throw new IllegalArgumentException("resultVecOffset < 0");
}
if (lhsMatOffset < 0) {
throw new IllegalArgumentException("lhsMatOffset < 0");
}
if (rhsVecOffset < 0) {
throw new IllegalArgumentException("rhsVecOffset < 0");
}
if (resultVec.length < resultVecOffset + 4) {
throw new IllegalArgumentException("resultVec.length < resultVecOffset + 4");
}
if (lhsMat.length < lhsMatOffset + 16) {
throw new IllegalArgumentException("lhsMat.length < lhsMatOffset + 16");
}
if (rhsVec.length < rhsVecOffset + 4) {
throw new IllegalArgumentException("rhsVec.length < rhsVecOffset + 4");
}
float tmp0 = lhsMat[0 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] +
lhsMat[0 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] +
lhsMat[0 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] +
lhsMat[0 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset];
float tmp1 = lhsMat[1 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] +
lhsMat[1 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] +
lhsMat[1 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] +
lhsMat[1 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset];
float tmp2 = lhsMat[2 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] +
lhsMat[2 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] +
lhsMat[2 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] +
lhsMat[2 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset];
float tmp3 = lhsMat[3 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] +
lhsMat[3 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] +
lhsMat[3 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] +
lhsMat[3 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset];
resultVec[ 0 + resultVecOffset ] = tmp0;
resultVec[ 1 + resultVecOffset ] = tmp1;
resultVec[ 2 + resultVecOffset ] = tmp2;
resultVec[ 3 + resultVecOffset ] = tmp3;
}
/**
* Transposes a 4 x 4 matrix.
* <p>
* mTrans and m must not overlap.
*
* @param mTrans the array that holds the output transposed matrix
* @param mTransOffset an offset into mTrans where the transposed matrix is
* stored.
* @param m the input array
* @param mOffset an offset into m where the input matrix is stored.
*/
public static void transposeM(float[] mTrans, int mTransOffset, float[] m,
int mOffset) {
for (int i = 0; i < 4; i++) {
int mBase = i * 4 + mOffset;
mTrans[i + mTransOffset] = m[mBase];
mTrans[i + 4 + mTransOffset] = m[mBase + 1];
mTrans[i + 8 + mTransOffset] = m[mBase + 2];
mTrans[i + 12 + mTransOffset] = m[mBase + 3];
}
}
/**
* Inverts a 4 x 4 matrix.
* <p>
* mInv and m must not overlap.
*
* @param mInv the array that holds the output inverted matrix
* @param mInvOffset an offset into mInv where the inverted matrix is
* stored.
* @param m the input array
* @param mOffset an offset into m where the input matrix is stored.
* @return true if the matrix could be inverted, false if it could not.
*/
public static boolean invertM(float[] mInv, int mInvOffset, float[] m,
int mOffset) {
// Invert a 4 x 4 matrix using Cramer's Rule
// transpose matrix
final float src0 = m[mOffset + 0];
final float src4 = m[mOffset + 1];
final float src8 = m[mOffset + 2];
final float src12 = m[mOffset + 3];
final float src1 = m[mOffset + 4];
final float src5 = m[mOffset + 5];
final float src9 = m[mOffset + 6];
final float src13 = m[mOffset + 7];
final float src2 = m[mOffset + 8];
final float src6 = m[mOffset + 9];
final float src10 = m[mOffset + 10];
final float src14 = m[mOffset + 11];
final float src3 = m[mOffset + 12];
final float src7 = m[mOffset + 13];
final float src11 = m[mOffset + 14];
final float src15 = m[mOffset + 15];
// calculate pairs for first 8 elements (cofactors)
final float atmp0 = src10 * src15;
final float atmp1 = src11 * src14;
final float atmp2 = src9 * src15;
final float atmp3 = src11 * src13;
final float atmp4 = src9 * src14;
final float atmp5 = src10 * src13;
final float atmp6 = src8 * src15;
final float atmp7 = src11 * src12;
final float atmp8 = src8 * src14;
final float atmp9 = src10 * src12;
final float atmp10 = src8 * src13;
final float atmp11 = src9 * src12;
// calculate first 8 elements (cofactors)
final float dst0 = (atmp0 * src5 + atmp3 * src6 + atmp4 * src7)
- (atmp1 * src5 + atmp2 * src6 + atmp5 * src7);
final float dst1 = (atmp1 * src4 + atmp6 * src6 + atmp9 * src7)
- (atmp0 * src4 + atmp7 * src6 + atmp8 * src7);
final float dst2 = (atmp2 * src4 + atmp7 * src5 + atmp10 * src7)
- (atmp3 * src4 + atmp6 * src5 + atmp11 * src7);
final float dst3 = (atmp5 * src4 + atmp8 * src5 + atmp11 * src6)
- (atmp4 * src4 + atmp9 * src5 + atmp10 * src6);
final float dst4 = (atmp1 * src1 + atmp2 * src2 + atmp5 * src3)
- (atmp0 * src1 + atmp3 * src2 + atmp4 * src3);
final float dst5 = (atmp0 * src0 + atmp7 * src2 + atmp8 * src3)
- (atmp1 * src0 + atmp6 * src2 + atmp9 * src3);
final float dst6 = (atmp3 * src0 + atmp6 * src1 + atmp11 * src3)
- (atmp2 * src0 + atmp7 * src1 + atmp10 * src3);
final float dst7 = (atmp4 * src0 + atmp9 * src1 + atmp10 * src2)
- (atmp5 * src0 + atmp8 * src1 + atmp11 * src2);
// calculate pairs for second 8 elements (cofactors)
final float btmp0 = src2 * src7;
final float btmp1 = src3 * src6;
final float btmp2 = src1 * src7;
final float btmp3 = src3 * src5;
final float btmp4 = src1 * src6;
final float btmp5 = src2 * src5;
final float btmp6 = src0 * src7;
final float btmp7 = src3 * src4;
final float btmp8 = src0 * src6;
final float btmp9 = src2 * src4;
final float btmp10 = src0 * src5;
final float btmp11 = src1 * src4;
// calculate second 8 elements (cofactors)
final float dst8 = (btmp0 * src13 + btmp3 * src14 + btmp4 * src15)
- (btmp1 * src13 + btmp2 * src14 + btmp5 * src15);
final float dst9 = (btmp1 * src12 + btmp6 * src14 + btmp9 * src15)
- (btmp0 * src12 + btmp7 * src14 + btmp8 * src15);
final float dst10 = (btmp2 * src12 + btmp7 * src13 + btmp10 * src15)
- (btmp3 * src12 + btmp6 * src13 + btmp11 * src15);
final float dst11 = (btmp5 * src12 + btmp8 * src13 + btmp11 * src14)
- (btmp4 * src12 + btmp9 * src13 + btmp10 * src14);
final float dst12 = (btmp2 * src10 + btmp5 * src11 + btmp1 * src9 )
- (btmp4 * src11 + btmp0 * src9 + btmp3 * src10);
final float dst13 = (btmp8 * src11 + btmp0 * src8 + btmp7 * src10)
- (btmp6 * src10 + btmp9 * src11 + btmp1 * src8 );
final float dst14 = (btmp6 * src9 + btmp11 * src11 + btmp3 * src8 )
- (btmp10 * src11 + btmp2 * src8 + btmp7 * src9 );
final float dst15 = (btmp10 * src10 + btmp4 * src8 + btmp9 * src9 )
- (btmp8 * src9 + btmp11 * src10 + btmp5 * src8 );
// calculate determinant
final float det =
src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3;
if (det == 0.0f) {
return false;
}
// calculate matrix inverse
final float invdet = 1.0f / det;
mInv[ mInvOffset] = dst0 * invdet;
mInv[ 1 + mInvOffset] = dst1 * invdet;
mInv[ 2 + mInvOffset] = dst2 * invdet;
mInv[ 3 + mInvOffset] = dst3 * invdet;
mInv[ 4 + mInvOffset] = dst4 * invdet;
mInv[ 5 + mInvOffset] = dst5 * invdet;
mInv[ 6 + mInvOffset] = dst6 * invdet;
mInv[ 7 + mInvOffset] = dst7 * invdet;
mInv[ 8 + mInvOffset] = dst8 * invdet;
mInv[ 9 + mInvOffset] = dst9 * invdet;
mInv[10 + mInvOffset] = dst10 * invdet;
mInv[11 + mInvOffset] = dst11 * invdet;
mInv[12 + mInvOffset] = dst12 * invdet;
mInv[13 + mInvOffset] = dst13 * invdet;
mInv[14 + mInvOffset] = dst14 * invdet;
mInv[15 + mInvOffset] = dst15 * invdet;
return true;
}
/**
* Computes an orthographic projection matrix.
*
* @param m returns the result
* @param mOffset
* @param left
* @param right
* @param bottom
* @param top
* @param near
* @param far
*/
public static void orthoM(float[] m, int mOffset,
float left, float right, float bottom, float top,
float near, float far) {
if (left == right) {
throw new IllegalArgumentException("left == right");
}
if (bottom == top) {
throw new IllegalArgumentException("bottom == top");
}
if (near == far) {
throw new IllegalArgumentException("near == far");
}
final float r_width = 1.0f / (right - left);
final float r_height = 1.0f / (top - bottom);
final float r_depth = 1.0f / (far - near);
final float x = 2.0f * (r_width);
final float y = 2.0f * (r_height);
final float z = -2.0f * (r_depth);
final float tx = -(right + left) * r_width;
final float ty = -(top + bottom) * r_height;
final float tz = -(far + near) * r_depth;
m[mOffset + 0] = x;
m[mOffset + 5] = y;
m[mOffset +10] = z;
m[mOffset +12] = tx;
m[mOffset +13] = ty;
m[mOffset +14] = tz;
m[mOffset +15] = 1.0f;
m[mOffset + 1] = 0.0f;
m[mOffset + 2] = 0.0f;
m[mOffset + 3] = 0.0f;
m[mOffset + 4] = 0.0f;
m[mOffset + 6] = 0.0f;
m[mOffset + 7] = 0.0f;
m[mOffset + 8] = 0.0f;
m[mOffset + 9] = 0.0f;
m[mOffset + 11] = 0.0f;
}
/**
* Defines a projection matrix in terms of six clip planes.
*
* @param m the float array that holds the output perspective matrix
* @param offset the offset into float array m where the perspective
* matrix data is written
* @param left
* @param right
* @param bottom
* @param top
* @param near
* @param far
*/
public static void frustumM(float[] m, int offset,
float left, float right, float bottom, float top,
float near, float far) {
if (left == right) {
throw new IllegalArgumentException("left == right");
}
if (top == bottom) {
throw new IllegalArgumentException("top == bottom");
}
if (near == far) {
throw new IllegalArgumentException("near == far");
}
if (near <= 0.0f) {
throw new IllegalArgumentException("near <= 0.0f");
}
if (far <= 0.0f) {
throw new IllegalArgumentException("far <= 0.0f");
}
final float r_width = 1.0f / (right - left);
final float r_height = 1.0f / (top - bottom);
final float r_depth = 1.0f / (near - far);
final float x = 2.0f * (near * r_width);
final float y = 2.0f * (near * r_height);
final float A = (right + left) * r_width;
final float B = (top + bottom) * r_height;
final float C = (far + near) * r_depth;
final float D = 2.0f * (far * near * r_depth);
m[offset + 0] = x;
m[offset + 5] = y;
m[offset + 8] = A;
m[offset + 9] = B;
m[offset + 10] = C;
m[offset + 14] = D;
m[offset + 11] = -1.0f;
m[offset + 1] = 0.0f;
m[offset + 2] = 0.0f;
m[offset + 3] = 0.0f;
m[offset + 4] = 0.0f;
m[offset + 6] = 0.0f;
m[offset + 7] = 0.0f;
m[offset + 12] = 0.0f;
m[offset + 13] = 0.0f;
m[offset + 15] = 0.0f;
}
/**
* Defines a projection matrix in terms of a field of view angle, an
* aspect ratio, and z clip planes.
*
* @param m the float array that holds the perspective matrix
* @param offset the offset into float array m where the perspective
* matrix data is written
* @param fovy field of view in y direction, in degrees
* @param aspect width to height aspect ratio of the viewport
* @param zNear
* @param zFar
*/
public static void perspectiveM(float[] m, int offset,
float fovy, float aspect, float zNear, float zFar) {
float f = 1.0f / (float) Math.tan(fovy * (Math.PI / 360.0));
float rangeReciprocal = 1.0f / (zNear - zFar);
m[offset + 0] = f / aspect;
m[offset + 1] = 0.0f;
m[offset + 2] = 0.0f;
m[offset + 3] = 0.0f;
m[offset + 4] = 0.0f;
m[offset + 5] = f;
m[offset + 6] = 0.0f;
m[offset + 7] = 0.0f;
m[offset + 8] = 0.0f;
m[offset + 9] = 0.0f;
m[offset + 10] = (zFar + zNear) * rangeReciprocal;
m[offset + 11] = -1.0f;
m[offset + 12] = 0.0f;
m[offset + 13] = 0.0f;
m[offset + 14] = 2.0f * zFar * zNear * rangeReciprocal;
m[offset + 15] = 0.0f;
}
/**
* Computes the length of a vector.
*
* @param x x coordinate of a vector
* @param y y coordinate of a vector
* @param z z coordinate of a vector
* @return the length of a vector
*/
public static float length(float x, float y, float z) {
return (float) Math.sqrt(x * x + y * y + z * z);
}
/**
* Sets matrix m to the identity matrix.
*
* @param sm returns the result
* @param smOffset index into sm where the result matrix starts
*/
public static void setIdentityM(float[] sm, int smOffset) {
for (int i=0 ; i<16 ; i++) {
sm[smOffset + i] = 0;
}
for(int i = 0; i < 16; i += 5) {
sm[smOffset + i] = 1.0f;
}
}
/**
* Scales matrix m by x, y, and z, putting the result in sm.
* <p>
* m and sm must not overlap.
*
* @param sm returns the result
* @param smOffset index into sm where the result matrix starts
* @param m source matrix
* @param mOffset index into m where the source matrix starts
* @param x scale factor x
* @param y scale factor y
* @param z scale factor z
*/
public static void scaleM(float[] sm, int smOffset,
float[] m, int mOffset,
float x, float y, float z) {
for (int i=0 ; i<4 ; i++) {
int smi = smOffset + i;
int mi = mOffset + i;
sm[ smi] = m[ mi] * x;
sm[ 4 + smi] = m[ 4 + mi] * y;
sm[ 8 + smi] = m[ 8 + mi] * z;
sm[12 + smi] = m[12 + mi];
}
}
/**
* Scales matrix m in place by sx, sy, and sz.
*
* @param m matrix to scale
* @param mOffset index into m where the matrix starts
* @param x scale factor x
* @param y scale factor y
* @param z scale factor z
*/
public static void scaleM(float[] m, int mOffset,
float x, float y, float z) {
for (int i=0 ; i<4 ; i++) {
int mi = mOffset + i;
m[ mi] *= x;
m[ 4 + mi] *= y;
m[ 8 + mi] *= z;
}
}
/**
* Translates matrix m by x, y, and z, putting the result in tm.
* <p>
* m and tm must not overlap.
*
* @param tm returns the result
* @param tmOffset index into sm where the result matrix starts
* @param m source matrix
* @param mOffset index into m where the source matrix starts
* @param x translation factor x
* @param y translation factor y
* @param z translation factor z
*/
public static void translateM(float[] tm, int tmOffset,
float[] m, int mOffset,
float x, float y, float z) {
for (int i=0 ; i<12 ; i++) {
tm[tmOffset + i] = m[mOffset + i];
}
for (int i=0 ; i<4 ; i++) {
int tmi = tmOffset + i;
int mi = mOffset + i;
tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z +
m[12 + mi];
}
}
/**
* Translates matrix m by x, y, and z in place.
*
* @param m matrix
* @param mOffset index into m where the matrix starts
* @param x translation factor x
* @param y translation factor y
* @param z translation factor z
*/
public static void translateM(
float[] m, int mOffset,
float x, float y, float z) {
for (int i=0 ; i<4 ; i++) {
int mi = mOffset + i;
m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z;
}
}
/**
* Rotates matrix m by angle a (in degrees) around the axis (x, y, z).
* <p>
* m and rm must not overlap.
*
* @param rm returns the result
* @param rmOffset index into rm where the result matrix starts
* @param m source matrix
* @param mOffset index into m where the source matrix starts
* @param a angle to rotate in degrees
* @param x X axis component
* @param y Y axis component
* @param z Z axis component
*/
public static void rotateM(float[] rm, int rmOffset,
float[] m, int mOffset,
float a, float x, float y, float z) {
float[] tmp = ThreadTmp.get();
setRotateM(tmp, 16, a, x, y, z);
multiplyMM(rm, rmOffset, m, mOffset, tmp, 16);
}
/**
* Rotates matrix m in place by angle a (in degrees)
* around the axis (x, y, z).
*
* @param m source matrix
* @param mOffset index into m where the matrix starts
* @param a angle to rotate in degrees
* @param x X axis component
* @param y Y axis component
* @param z Z axis component
*/
public static void rotateM(float[] m, int mOffset,
float a, float x, float y, float z) {
rotateM(m, mOffset, m, mOffset, a, x, y, z);
}
/**
* Creates a matrix for rotation by angle a (in degrees)
* around the axis (x, y, z).
* <p>
* An optimized path will be used for rotation about a major axis
* (e.g. x=1.0f y=0.0f z=0.0f).
*
* @param rm returns the result
* @param rmOffset index into rm where the result matrix starts
* @param a angle to rotate in degrees
* @param x X axis component
* @param y Y axis component
* @param z Z axis component
*/
public static void setRotateM(float[] rm, int rmOffset,
float a, float x, float y, float z) {
rm[rmOffset + 3] = 0;
rm[rmOffset + 7] = 0;
rm[rmOffset + 11]= 0;
rm[rmOffset + 12]= 0;
rm[rmOffset + 13]= 0;
rm[rmOffset + 14]= 0;
rm[rmOffset + 15]= 1;
a *= (float) (Math.PI / 180.0f);
float s = (float) Math.sin(a);
float c = (float) Math.cos(a);
if (1.0f == x && 0.0f == y && 0.0f == z) {
rm[rmOffset + 5] = c; rm[rmOffset + 10]= c;
rm[rmOffset + 6] = s; rm[rmOffset + 9] = -s;
rm[rmOffset + 1] = 0; rm[rmOffset + 2] = 0;
rm[rmOffset + 4] = 0; rm[rmOffset + 8] = 0;
rm[rmOffset + 0] = 1;
} else if (0.0f == x && 1.0f == y && 0.0f == z) {
rm[rmOffset + 0] = c; rm[rmOffset + 10]= c;
rm[rmOffset + 8] = s; rm[rmOffset + 2] = -s;
rm[rmOffset + 1] = 0; rm[rmOffset + 4] = 0;
rm[rmOffset + 6] = 0; rm[rmOffset + 9] = 0;
rm[rmOffset + 5] = 1;
} else if (0.0f == x && 0.0f == y && 1.0f == z) {
rm[rmOffset + 0] = c; rm[rmOffset + 5] = c;
rm[rmOffset + 1] = s; rm[rmOffset + 4] = -s;
rm[rmOffset + 2] = 0; rm[rmOffset + 6] = 0;
rm[rmOffset + 8] = 0; rm[rmOffset + 9] = 0;
rm[rmOffset + 10]= 1;
} else {
float len = length(x, y, z);
if (1.0f != len) {
float recipLen = 1.0f / len;
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
float nc = 1.0f - c;
float xy = x * y;
float yz = y * z;
float zx = z * x;
float xs = x * s;
float ys = y * s;
float zs = z * s;
rm[rmOffset + 0] = x*x*nc + c;
rm[rmOffset + 4] = xy*nc - zs;
rm[rmOffset + 8] = zx*nc + ys;
rm[rmOffset + 1] = xy*nc + zs;
rm[rmOffset + 5] = y*y*nc + c;
rm[rmOffset + 9] = yz*nc - xs;
rm[rmOffset + 2] = zx*nc - ys;
rm[rmOffset + 6] = yz*nc + xs;
rm[rmOffset + 10] = z*z*nc + c;
}
}
/**
* Converts Euler angles to a rotation matrix.
*
* @param rm returns the result
* @param rmOffset index into rm where the result matrix starts
* @param x angle of rotation, in degrees
* @param y is broken, do not use
* @param z angle of rotation, in degrees
*
* @deprecated This method is incorrect around the y axis. This method is
* deprecated and replaced (below) by setRotateEulerM2 which
* behaves correctly
*/
@Deprecated
public static void setRotateEulerM(float[] rm, int rmOffset,
float x, float y, float z) {
x *= (float) (Math.PI / 180.0f);
y *= (float) (Math.PI / 180.0f);
z *= (float) (Math.PI / 180.0f);
float cx = (float) Math.cos(x);
float sx = (float) Math.sin(x);
float cy = (float) Math.cos(y);
float sy = (float) Math.sin(y);
float cz = (float) Math.cos(z);
float sz = (float) Math.sin(z);
float cxsy = cx * sy;
float sxsy = sx * sy;
rm[rmOffset + 0] = cy * cz;
rm[rmOffset + 1] = -cy * sz;
rm[rmOffset + 2] = sy;
rm[rmOffset + 3] = 0.0f;
rm[rmOffset + 4] = cxsy * cz + cx * sz;
rm[rmOffset + 5] = -cxsy * sz + cx * cz;
rm[rmOffset + 6] = -sx * cy;
rm[rmOffset + 7] = 0.0f;
rm[rmOffset + 8] = -sxsy * cz + sx * sz;
rm[rmOffset + 9] = sxsy * sz + sx * cz;
rm[rmOffset + 10] = cx * cy;
rm[rmOffset + 11] = 0.0f;
rm[rmOffset + 12] = 0.0f;
rm[rmOffset + 13] = 0.0f;
rm[rmOffset + 14] = 0.0f;
rm[rmOffset + 15] = 1.0f;
}
/**
* Converts Euler angles to a rotation matrix.
*
* @param rm returns the result
* @param rmOffset index into rm where the result matrix starts
* @param x angle of rotation, in degrees
* @param y angle of rotation, in degrees
* @param z angle of rotation, in degrees
*
* @throws IllegalArgumentException if rm is null;
* or if rmOffset + 16 > rm.length;
* rmOffset < 0
*/
public static void setRotateEulerM2(@NonNull float[] rm, int rmOffset,
float x, float y, float z) {
if (rm == null) {
throw new IllegalArgumentException("rm == null");
}
if (rmOffset < 0) {
throw new IllegalArgumentException("rmOffset < 0");
}
if (rm.length < rmOffset + 16) {
throw new IllegalArgumentException("rm.length < rmOffset + 16");
}
x *= (float) (Math.PI / 180.0f);
y *= (float) (Math.PI / 180.0f);
z *= (float) (Math.PI / 180.0f);
float cx = (float) Math.cos(x);
float sx = (float) Math.sin(x);
float cy = (float) Math.cos(y);
float sy = (float) Math.sin(y);
float cz = (float) Math.cos(z);
float sz = (float) Math.sin(z);
float cxsy = cx * sy;
float sxsy = sx * sy;
rm[rmOffset + 0] = cy * cz;
rm[rmOffset + 1] = -cy * sz;
rm[rmOffset + 2] = sy;
rm[rmOffset + 3] = 0.0f;
rm[rmOffset + 4] = sxsy * cz + cx * sz;
rm[rmOffset + 5] = -sxsy * sz + cx * cz;
rm[rmOffset + 6] = -sx * cy;
rm[rmOffset + 7] = 0.0f;
rm[rmOffset + 8] = -cxsy * cz + sx * sz;
rm[rmOffset + 9] = cxsy * sz + sx * cz;
rm[rmOffset + 10] = cx * cy;
rm[rmOffset + 11] = 0.0f;
rm[rmOffset + 12] = 0.0f;
rm[rmOffset + 13] = 0.0f;
rm[rmOffset + 14] = 0.0f;
rm[rmOffset + 15] = 1.0f;
}
/**
* Defines a viewing transformation in terms of an eye point, a center of
* view, and an up vector.
*
* @param rm returns the result
* @param rmOffset index into rm where the result matrix starts
* @param eyeX eye point X
* @param eyeY eye point Y
* @param eyeZ eye point Z
* @param centerX center of view X
* @param centerY center of view Y
* @param centerZ center of view Z
* @param upX up vector X
* @param upY up vector Y
* @param upZ up vector Z
*/
public static void setLookAtM(float[] rm, int rmOffset,
float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ, float upX, float upY,
float upZ) {
// See the OpenGL GLUT documentation for gluLookAt for a description
// of the algorithm. We implement it in a straightforward way:
float fx = centerX - eyeX;
float fy = centerY - eyeY;
float fz = centerZ - eyeZ;
// Normalize f
float rlf = 1.0f / Matrix.length(fx, fy, fz);
fx *= rlf;
fy *= rlf;
fz *= rlf;
// compute s = f x up (x means "cross product")
float sx = fy * upZ - fz * upY;
float sy = fz * upX - fx * upZ;
float sz = fx * upY - fy * upX;
// and normalize s
float rls = 1.0f / Matrix.length(sx, sy, sz);
sx *= rls;
sy *= rls;
sz *= rls;
// compute u = s x f
float ux = sy * fz - sz * fy;
float uy = sz * fx - sx * fz;
float uz = sx * fy - sy * fx;
rm[rmOffset + 0] = sx;
rm[rmOffset + 1] = ux;
rm[rmOffset + 2] = -fx;
rm[rmOffset + 3] = 0.0f;
rm[rmOffset + 4] = sy;
rm[rmOffset + 5] = uy;
rm[rmOffset + 6] = -fy;
rm[rmOffset + 7] = 0.0f;
rm[rmOffset + 8] = sz;
rm[rmOffset + 9] = uz;
rm[rmOffset + 10] = -fz;
rm[rmOffset + 11] = 0.0f;
rm[rmOffset + 12] = 0.0f;
rm[rmOffset + 13] = 0.0f;
rm[rmOffset + 14] = 0.0f;
rm[rmOffset + 15] = 1.0f;
translateM(rm, rmOffset, -eyeX, -eyeY, -eyeZ);
}
}
|