1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
/*
* Copyright (C) 2009-2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.renderscript;
import android.compat.annotation.UnsupportedAppUsage;
/**
* Class for exposing the native RenderScript rs_matrix4x4 type back to the Android system.
*
* @deprecated Renderscript has been deprecated in API level 31. Please refer to the <a
* href="https://developer.android.com/guide/topics/renderscript/migration-guide">migration
* guide</a> for the proposed alternatives.
**/
@Deprecated
public class Matrix4f {
/**
* Creates a new identity 4x4 matrix
*/
public Matrix4f() {
mMat = new float[16];
loadIdentity();
}
/**
* Creates a new matrix and sets its values from the given
* parameter
*
* @param dataArray values to set the matrix to, must be 16
* floats long
*/
public Matrix4f(float[] dataArray) {
mMat = new float[16];
System.arraycopy(dataArray, 0, mMat, 0, mMat.length);
}
/**
* Return a reference to the internal array representing matrix
* values. Modifying this array will also change the matrix
*
* @return internal array representing the matrix
*/
public float[] getArray() {
return mMat;
}
/**
* Returns the value for a given row and column
*
* @param x column of the value to return
* @param y row of the value to return
*
* @return value in the yth row and xth column
*/
public float get(int x, int y) {
return mMat[x*4 + y];
}
/**
* Sets the value for a given row and column
*
* @param x column of the value to set
* @param y row of the value to set
*/
public void set(int x, int y, float v) {
mMat[x*4 + y] = v;
}
/**
* Sets the matrix values to identity
*/
public void loadIdentity() {
mMat[0] = 1;
mMat[1] = 0;
mMat[2] = 0;
mMat[3] = 0;
mMat[4] = 0;
mMat[5] = 1;
mMat[6] = 0;
mMat[7] = 0;
mMat[8] = 0;
mMat[9] = 0;
mMat[10] = 1;
mMat[11] = 0;
mMat[12] = 0;
mMat[13] = 0;
mMat[14] = 0;
mMat[15] = 1;
}
/**
* Sets the values of the matrix to those of the parameter
*
* @param src matrix to load the values from
*/
public void load(Matrix4f src) {
System.arraycopy(src.getArray(), 0, mMat, 0, mMat.length);
}
/**
* Sets the values of the matrix to those of the parameter
*
* @param src matrix to load the values from
* @hide
*/
public void load(Matrix3f src) {
mMat[0] = src.mMat[0];
mMat[1] = src.mMat[1];
mMat[2] = src.mMat[2];
mMat[3] = 0;
mMat[4] = src.mMat[3];
mMat[5] = src.mMat[4];
mMat[6] = src.mMat[5];
mMat[7] = 0;
mMat[8] = src.mMat[6];
mMat[9] = src.mMat[7];
mMat[10] = src.mMat[8];
mMat[11] = 0;
mMat[12] = 0;
mMat[13] = 0;
mMat[14] = 0;
mMat[15] = 1;
}
/**
* Sets current values to be a rotation matrix of certain angle
* about a given axis
*
* @param rot angle of rotation
* @param x rotation axis x
* @param y rotation axis y
* @param z rotation axis z
*/
public void loadRotate(float rot, float x, float y, float z) {
float c, s;
mMat[3] = 0;
mMat[7] = 0;
mMat[11]= 0;
mMat[12]= 0;
mMat[13]= 0;
mMat[14]= 0;
mMat[15]= 1;
rot *= (float)(java.lang.Math.PI / 180.0f);
c = (float)java.lang.Math.cos(rot);
s = (float)java.lang.Math.sin(rot);
float len = (float)java.lang.Math.sqrt(x*x + y*y + z*z);
if (!(len != 1)) {
float recipLen = 1.f / len;
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
float nc = 1.0f - c;
float xy = x * y;
float yz = y * z;
float zx = z * x;
float xs = x * s;
float ys = y * s;
float zs = z * s;
mMat[ 0] = x*x*nc + c;
mMat[ 4] = xy*nc - zs;
mMat[ 8] = zx*nc + ys;
mMat[ 1] = xy*nc + zs;
mMat[ 5] = y*y*nc + c;
mMat[ 9] = yz*nc - xs;
mMat[ 2] = zx*nc - ys;
mMat[ 6] = yz*nc + xs;
mMat[10] = z*z*nc + c;
}
/**
* Sets current values to be a scale matrix of given dimensions
*
* @param x scale component x
* @param y scale component y
* @param z scale component z
*/
public void loadScale(float x, float y, float z) {
loadIdentity();
mMat[0] = x;
mMat[5] = y;
mMat[10] = z;
}
/**
* Sets current values to be a translation matrix of given
* dimensions
*
* @param x translation component x
* @param y translation component y
* @param z translation component z
*/
public void loadTranslate(float x, float y, float z) {
loadIdentity();
mMat[12] = x;
mMat[13] = y;
mMat[14] = z;
}
/**
* Sets current values to be the result of multiplying two given
* matrices
*
* @param lhs left hand side matrix
* @param rhs right hand side matrix
*/
public void loadMultiply(Matrix4f lhs, Matrix4f rhs) {
for (int i=0 ; i<4 ; i++) {
float ri0 = 0;
float ri1 = 0;
float ri2 = 0;
float ri3 = 0;
for (int j=0 ; j<4 ; j++) {
float rhs_ij = rhs.get(i,j);
ri0 += lhs.get(j,0) * rhs_ij;
ri1 += lhs.get(j,1) * rhs_ij;
ri2 += lhs.get(j,2) * rhs_ij;
ri3 += lhs.get(j,3) * rhs_ij;
}
set(i,0, ri0);
set(i,1, ri1);
set(i,2, ri2);
set(i,3, ri3);
}
}
/**
* Set current values to be an orthographic projection matrix
*
* @param l location of the left vertical clipping plane
* @param r location of the right vertical clipping plane
* @param b location of the bottom horizontal clipping plane
* @param t location of the top horizontal clipping plane
* @param n location of the near clipping plane
* @param f location of the far clipping plane
*/
public void loadOrtho(float l, float r, float b, float t, float n, float f) {
loadIdentity();
mMat[0] = 2 / (r - l);
mMat[5] = 2 / (t - b);
mMat[10]= -2 / (f - n);
mMat[12]= -(r + l) / (r - l);
mMat[13]= -(t + b) / (t - b);
mMat[14]= -(f + n) / (f - n);
}
/**
* Set current values to be an orthographic projection matrix
* with the right and bottom clipping planes set to the given
* values. Left and top clipping planes are set to 0. Near and
* far are set to -1, 1 respectively
*
* @param w location of the right vertical clipping plane
* @param h location of the bottom horizontal clipping plane
*
*/
public void loadOrthoWindow(int w, int h) {
loadOrtho(0,w, h,0, -1,1);
}
/**
* Sets current values to be a perspective projection matrix
*
* @param l location of the left vertical clipping plane
* @param r location of the right vertical clipping plane
* @param b location of the bottom horizontal clipping plane
* @param t location of the top horizontal clipping plane
* @param n location of the near clipping plane, must be positive
* @param f location of the far clipping plane, must be positive
*
*/
public void loadFrustum(float l, float r, float b, float t, float n, float f) {
loadIdentity();
mMat[0] = 2 * n / (r - l);
mMat[5] = 2 * n / (t - b);
mMat[8] = (r + l) / (r - l);
mMat[9] = (t + b) / (t - b);
mMat[10]= -(f + n) / (f - n);
mMat[11]= -1;
mMat[14]= -2*f*n / (f - n);
mMat[15]= 0;
}
/**
* Sets current values to be a perspective projection matrix
*
* @param fovy vertical field of view angle in degrees
* @param aspect aspect ratio of the screen
* @param near near cliping plane, must be positive
* @param far far clipping plane, must be positive
*/
public void loadPerspective(float fovy, float aspect, float near, float far) {
float top = near * (float)Math.tan((float) (fovy * Math.PI / 360.0f));
float bottom = -top;
float left = bottom * aspect;
float right = top * aspect;
loadFrustum(left, right, bottom, top, near, far);
}
/**
* Helper function to set the current values to a perspective
* projection matrix with aspect ratio defined by the parameters
* and (near, far), (bottom, top) mapping to (-1, 1) at z = 0
*
* @param w screen width
* @param h screen height
*/
public void loadProjectionNormalized(int w, int h) {
// range -1,1 in the narrow axis at z = 0.
Matrix4f m1 = new Matrix4f();
Matrix4f m2 = new Matrix4f();
if(w > h) {
float aspect = ((float)w) / h;
m1.loadFrustum(-aspect,aspect, -1,1, 1,100);
} else {
float aspect = ((float)h) / w;
m1.loadFrustum(-1,1, -aspect,aspect, 1,100);
}
m2.loadRotate(180, 0, 1, 0);
m1.loadMultiply(m1, m2);
m2.loadScale(-2, 2, 1);
m1.loadMultiply(m1, m2);
m2.loadTranslate(0, 0, 2);
m1.loadMultiply(m1, m2);
load(m1);
}
/**
* Post-multiplies the current matrix by a given parameter
*
* @param rhs right hand side to multiply by
*/
public void multiply(Matrix4f rhs) {
Matrix4f tmp = new Matrix4f();
tmp.loadMultiply(this, rhs);
load(tmp);
}
/**
* Modifies the current matrix by post-multiplying it with a
* rotation matrix of certain angle about a given axis
*
* @param rot angle of rotation
* @param x rotation axis x
* @param y rotation axis y
* @param z rotation axis z
*/
public void rotate(float rot, float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadRotate(rot, x, y, z);
multiply(tmp);
}
/**
* Modifies the current matrix by post-multiplying it with a
* scale matrix of given dimensions
*
* @param x scale component x
* @param y scale component y
* @param z scale component z
*/
public void scale(float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadScale(x, y, z);
multiply(tmp);
}
/**
* Modifies the current matrix by post-multiplying it with a
* translation matrix of given dimensions
*
* @param x translation component x
* @param y translation component y
* @param z translation component z
*/
public void translate(float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadTranslate(x, y, z);
multiply(tmp);
}
private float computeCofactor(int i, int j) {
int c0 = (i+1) % 4;
int c1 = (i+2) % 4;
int c2 = (i+3) % 4;
int r0 = (j+1) % 4;
int r1 = (j+2) % 4;
int r2 = (j+3) % 4;
float minor = (mMat[c0 + 4*r0] * (mMat[c1 + 4*r1] * mMat[c2 + 4*r2] -
mMat[c1 + 4*r2] * mMat[c2 + 4*r1]))
- (mMat[c0 + 4*r1] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r2] -
mMat[c1 + 4*r2] * mMat[c2 + 4*r0]))
+ (mMat[c0 + 4*r2] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r1] -
mMat[c1 + 4*r1] * mMat[c2 + 4*r0]));
float cofactor = ((i+j) & 1) != 0 ? -minor : minor;
return cofactor;
}
/**
* Sets the current matrix to its inverse
*/
public boolean inverse() {
Matrix4f result = new Matrix4f();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
result.mMat[4*i + j] = computeCofactor(i, j);
}
}
// Dot product of 0th column of source and 0th row of result
float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[1] +
mMat[8]*result.mMat[2] + mMat[12]*result.mMat[3];
if (Math.abs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; ++i) {
mMat[i] = result.mMat[i] * det;
}
return true;
}
/**
* Sets the current matrix to its inverse transpose
*/
public boolean inverseTranspose() {
Matrix4f result = new Matrix4f();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
result.mMat[4*j + i] = computeCofactor(i, j);
}
}
float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[4] +
mMat[8]*result.mMat[8] + mMat[12]*result.mMat[12];
if (Math.abs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; ++i) {
mMat[i] = result.mMat[i] * det;
}
return true;
}
/**
* Sets the current matrix to its transpose
*/
public void transpose() {
for(int i = 0; i < 3; ++i) {
for(int j = i + 1; j < 4; ++j) {
float temp = mMat[i*4 + j];
mMat[i*4 + j] = mMat[j*4 + i];
mMat[j*4 + i] = temp;
}
}
}
@UnsupportedAppUsage
final float[] mMat;
}
|