1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net;
import android.compat.annotation.UnsupportedAppUsage;
import android.net.sntp.Duration64;
import android.net.sntp.Timestamp64;
import android.os.SystemClock;
import android.util.Log;
import android.util.Slog;
import com.android.internal.annotations.VisibleForTesting;
import com.android.internal.util.TrafficStatsConstants;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.time.Duration;
import java.time.Instant;
import java.util.Objects;
import java.util.Random;
import java.util.function.Supplier;
/**
* {@hide}
*
* Simple SNTP client class for retrieving network time.
*
* Sample usage:
* <pre>SntpClient client = new SntpClient();
* if (client.requestTime("time.foo.com")) {
* long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
* }
* </pre>
*/
public class SntpClient {
private static final String TAG = "SntpClient";
private static final boolean DBG = true;
private static final int REFERENCE_TIME_OFFSET = 16;
private static final int ORIGINATE_TIME_OFFSET = 24;
private static final int RECEIVE_TIME_OFFSET = 32;
private static final int TRANSMIT_TIME_OFFSET = 40;
private static final int NTP_PACKET_SIZE = 48;
public static final int STANDARD_NTP_PORT = 123;
private static final int NTP_MODE_CLIENT = 3;
private static final int NTP_MODE_SERVER = 4;
private static final int NTP_MODE_BROADCAST = 5;
private static final int NTP_VERSION = 3;
private static final int NTP_LEAP_NOSYNC = 3;
private static final int NTP_STRATUM_DEATH = 0;
private static final int NTP_STRATUM_MAX = 15;
// The source of the current system clock time, replaceable for testing.
private final Supplier<Instant> mSystemTimeSupplier;
private final Random mRandom;
// The last offset calculated from an NTP server response
private long mClockOffset;
// The last system time computed from an NTP server response
private long mNtpTime;
// The value of SystemClock.elapsedRealtime() corresponding to mNtpTime / mClockOffset
private long mNtpTimeReference;
// The round trip (network) time in milliseconds
private long mRoundTripTime;
private static class InvalidServerReplyException extends Exception {
public InvalidServerReplyException(String message) {
super(message);
}
}
@UnsupportedAppUsage
public SntpClient() {
this(Instant::now, defaultRandom());
}
@VisibleForTesting
public SntpClient(Supplier<Instant> systemTimeSupplier, Random random) {
mSystemTimeSupplier = Objects.requireNonNull(systemTimeSupplier);
mRandom = Objects.requireNonNull(random);
}
/**
* Sends an SNTP request to the given host and processes the response.
*
* @param host host name of the server.
* @param port port of the server.
* @param timeout network timeout in milliseconds. the timeout doesn't include the DNS lookup
* time, and it applies to each individual query to the resolved addresses of
* the NTP server.
* @param network network over which to send the request.
* @return true if the transaction was successful.
*/
public boolean requestTime(String host, int port, int timeout, Network network) {
final Network networkForResolv = network.getPrivateDnsBypassingCopy();
try {
final InetAddress[] addresses = networkForResolv.getAllByName(host);
for (int i = 0; i < addresses.length; i++) {
if (requestTime(addresses[i], port, timeout, networkForResolv)) {
return true;
}
}
} catch (UnknownHostException e) {
Log.w(TAG, "Unknown host: " + host);
EventLogTags.writeNtpFailure(host, e.toString());
}
if (DBG) Log.d(TAG, "request time failed");
return false;
}
public boolean requestTime(InetAddress address, int port, int timeout, Network network) {
DatagramSocket socket = null;
final int oldTag = TrafficStats.getAndSetThreadStatsTag(
TrafficStatsConstants.TAG_SYSTEM_NTP);
try {
socket = new DatagramSocket();
network.bindSocket(socket);
socket.setSoTimeout(timeout);
byte[] buffer = new byte[NTP_PACKET_SIZE];
DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port);
// set mode = 3 (client) and version = 3
// mode is in low 3 bits of first byte
// version is in bits 3-5 of first byte
buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
// get current time and write it to the request packet
final Instant requestTime = mSystemTimeSupplier.get();
final Timestamp64 requestTimestamp = Timestamp64.fromInstant(requestTime);
final Timestamp64 randomizedRequestTimestamp =
requestTimestamp.randomizeSubMillis(mRandom);
final long requestTicks = SystemClock.elapsedRealtime();
writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, randomizedRequestTimestamp);
socket.send(request);
// read the response
DatagramPacket response = new DatagramPacket(buffer, buffer.length);
socket.receive(response);
final long responseTicks = SystemClock.elapsedRealtime();
final Instant responseTime = requestTime.plusMillis(responseTicks - requestTicks);
final Timestamp64 responseTimestamp = Timestamp64.fromInstant(responseTime);
// extract the results
final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
final byte mode = (byte) (buffer[0] & 0x7);
final int stratum = (int) (buffer[1] & 0xff);
final Timestamp64 referenceTimestamp = readTimeStamp(buffer, REFERENCE_TIME_OFFSET);
final Timestamp64 originateTimestamp = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
final Timestamp64 receiveTimestamp = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
final Timestamp64 transmitTimestamp = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
/* Do validation according to RFC */
checkValidServerReply(leap, mode, stratum, transmitTimestamp, referenceTimestamp,
randomizedRequestTimestamp, originateTimestamp);
long totalTransactionDurationMillis = responseTicks - requestTicks;
long serverDurationMillis =
Duration64.between(receiveTimestamp, transmitTimestamp).toDuration().toMillis();
long roundTripTimeMillis = totalTransactionDurationMillis - serverDurationMillis;
Duration clockOffsetDuration = calculateClockOffset(requestTimestamp,
receiveTimestamp, transmitTimestamp, responseTimestamp);
long clockOffsetMillis = clockOffsetDuration.toMillis();
EventLogTags.writeNtpSuccess(
address.toString(), roundTripTimeMillis, clockOffsetMillis);
if (DBG) {
Log.d(TAG, "round trip: " + roundTripTimeMillis + "ms, "
+ "clock offset: " + clockOffsetMillis + "ms");
}
// save our results - use the times on this side of the network latency
// (response rather than request time)
mClockOffset = clockOffsetMillis;
mNtpTime = responseTime.plus(clockOffsetDuration).toEpochMilli();
mNtpTimeReference = responseTicks;
mRoundTripTime = roundTripTimeMillis;
} catch (Exception e) {
EventLogTags.writeNtpFailure(address.toString(), e.toString());
if (DBG) Log.d(TAG, "request time failed: " + e);
return false;
} finally {
if (socket != null) {
socket.close();
}
TrafficStats.setThreadStatsTag(oldTag);
}
return true;
}
/** Performs the NTP clock offset calculation. */
@VisibleForTesting
public static Duration calculateClockOffset(Timestamp64 clientRequestTimestamp,
Timestamp64 serverReceiveTimestamp, Timestamp64 serverTransmitTimestamp,
Timestamp64 clientResponseTimestamp) {
// According to RFC4330:
// t is the system clock offset (the adjustment we are trying to find)
// t = ((T2 - T1) + (T3 - T4)) / 2
//
// Which is:
// t = (([server]receiveTimestamp - [client]requestTimestamp)
// + ([server]transmitTimestamp - [client]responseTimestamp)) / 2
//
// See the NTP spec and tests: the numeric types used are deliberate:
// + Duration64.between() uses 64-bit arithmetic (32-bit for the seconds).
// + plus() / dividedBy() use Duration, which isn't the double precision floating point
// used in NTPv4, but is good enough.
return Duration64.between(clientRequestTimestamp, serverReceiveTimestamp)
.plus(Duration64.between(clientResponseTimestamp, serverTransmitTimestamp))
.dividedBy(2);
}
@Deprecated
@UnsupportedAppUsage
public boolean requestTime(String host, int timeout) {
Log.w(TAG, "Shame on you for calling the hidden API requestTime()!");
return false;
}
/**
* Returns the offset calculated to apply to the client clock to arrive at {@link #getNtpTime()}
*/
@VisibleForTesting
public long getClockOffset() {
return mClockOffset;
}
/**
* Returns the time computed from the NTP transaction.
*
* @return time value computed from NTP server response.
*/
@UnsupportedAppUsage
public long getNtpTime() {
return mNtpTime;
}
/**
* Returns the reference clock value (value of SystemClock.elapsedRealtime())
* corresponding to the NTP time.
*
* @return reference clock corresponding to the NTP time.
*/
@UnsupportedAppUsage
public long getNtpTimeReference() {
return mNtpTimeReference;
}
/**
* Returns the round trip time of the NTP transaction
*
* @return round trip time in milliseconds.
*/
@UnsupportedAppUsage
public long getRoundTripTime() {
return mRoundTripTime;
}
private static void checkValidServerReply(
byte leap, byte mode, int stratum, Timestamp64 transmitTimestamp,
Timestamp64 referenceTimestamp, Timestamp64 randomizedRequestTimestamp,
Timestamp64 originateTimestamp) throws InvalidServerReplyException {
if (leap == NTP_LEAP_NOSYNC) {
throw new InvalidServerReplyException("unsynchronized server");
}
if ((mode != NTP_MODE_SERVER) && (mode != NTP_MODE_BROADCAST)) {
throw new InvalidServerReplyException("untrusted mode: " + mode);
}
if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
throw new InvalidServerReplyException("untrusted stratum: " + stratum);
}
if (!randomizedRequestTimestamp.equals(originateTimestamp)) {
throw new InvalidServerReplyException(
"originateTimestamp != randomizedRequestTimestamp");
}
if (transmitTimestamp.equals(Timestamp64.ZERO)) {
throw new InvalidServerReplyException("zero transmitTimestamp");
}
if (referenceTimestamp.equals(Timestamp64.ZERO)) {
throw new InvalidServerReplyException("zero referenceTimestamp");
}
}
/**
* Reads an unsigned 32 bit big endian number from the given offset in the buffer.
*/
private long readUnsigned32(byte[] buffer, int offset) {
int i0 = buffer[offset++] & 0xFF;
int i1 = buffer[offset++] & 0xFF;
int i2 = buffer[offset++] & 0xFF;
int i3 = buffer[offset] & 0xFF;
int bits = (i0 << 24) | (i1 << 16) | (i2 << 8) | i3;
return bits & 0xFFFF_FFFFL;
}
/**
* Reads the NTP time stamp from the given offset in the buffer.
*/
private Timestamp64 readTimeStamp(byte[] buffer, int offset) {
long seconds = readUnsigned32(buffer, offset);
int fractionBits = (int) readUnsigned32(buffer, offset + 4);
return Timestamp64.fromComponents(seconds, fractionBits);
}
/**
* Writes the NTP time stamp at the given offset in the buffer.
*/
private void writeTimeStamp(byte[] buffer, int offset, Timestamp64 timestamp) {
long seconds = timestamp.getEraSeconds();
// write seconds in big endian format
buffer[offset++] = (byte) (seconds >>> 24);
buffer[offset++] = (byte) (seconds >>> 16);
buffer[offset++] = (byte) (seconds >>> 8);
buffer[offset++] = (byte) (seconds);
int fractionBits = timestamp.getFractionBits();
// write fraction in big endian format
buffer[offset++] = (byte) (fractionBits >>> 24);
buffer[offset++] = (byte) (fractionBits >>> 16);
buffer[offset++] = (byte) (fractionBits >>> 8);
buffer[offset] = (byte) (fractionBits);
}
private static Random defaultRandom() {
Random random;
try {
random = SecureRandom.getInstanceStrong();
} catch (NoSuchAlgorithmException e) {
// This should never happen.
Slog.wtf(TAG, "Unable to access SecureRandom", e);
random = new Random(System.currentTimeMillis());
}
return random;
}
}
|