1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/*
* Copyright 2012, The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ANDROID_LINEARALLOCATOR_H
#define ANDROID_LINEARALLOCATOR_H
#include <stddef.h>
#include <type_traits>
#include <vector>
namespace android {
namespace uirenderer {
/**
* A memory manager that internally allocates multi-kbyte buffers for placing objects in. It avoids
* the overhead of malloc when many objects are allocated. It is most useful when creating many
* small objects with a similar lifetime, and doesn't add significant overhead for large
* allocations.
*/
class LinearAllocator {
public:
LinearAllocator();
~LinearAllocator();
/**
* Reserves and returns a region of memory of at least size 'size', aligning as needed.
* Typically this is used in an object's overridden new() method or as a replacement for malloc.
*
* The lifetime of the returned buffers is tied to that of the LinearAllocator. If calling
* delete() on an object stored in a buffer is needed, it should be overridden to use
* rewindIfLastAlloc()
*
* Note that unlike create, for alloc the type is purely for compile-time error
* checking and does not affect size.
*/
template<class T>
void* alloc(size_t size) {
static_assert(std::is_trivially_destructible<T>::value,
"Error, type is non-trivial! did you mean to use create()?");
return allocImpl(size);
}
/**
* Allocates an instance of the template type with the given construction parameters
* and adds it to the automatic destruction list.
*/
template<class T, typename... Params>
T* create(Params&&... params) {
T* ret = new (allocImpl(sizeof(T))) T(std::forward<Params>(params)...);
if (!std::is_trivially_destructible<T>::value) {
auto dtor = [](void* ret) { ((T*)ret)->~T(); };
addToDestructionList(dtor, ret);
}
return ret;
}
template<class T, typename... Params>
T* create_trivial(Params&&... params) {
static_assert(std::is_trivially_destructible<T>::value,
"Error, called create_trivial on a non-trivial type");
return new (allocImpl(sizeof(T))) T(std::forward<Params>(params)...);
}
template<class T>
T* create_trivial_array(int count) {
static_assert(std::is_trivially_destructible<T>::value,
"Error, called create_trivial_array on a non-trivial type");
return reinterpret_cast<T*>(allocImpl(sizeof(T) * count));
}
/**
* Attempt to deallocate the given buffer, with the LinearAllocator attempting to rewind its
* state if possible.
*/
void rewindIfLastAlloc(void* ptr, size_t allocSize);
/**
* Same as rewindIfLastAlloc(void*, size_t)
*/
template<class T>
void rewindIfLastAlloc(T* ptr) {
rewindIfLastAlloc((void*)ptr, sizeof(T));
}
/**
* Dump memory usage statistics to the log (allocated and wasted space)
*/
void dumpMemoryStats(const char* prefix = "");
/**
* The number of bytes used for buffers allocated in the LinearAllocator (does not count space
* wasted)
*/
size_t usedSize() const { return mTotalAllocated - mWastedSpace; }
private:
LinearAllocator(const LinearAllocator& other);
class Page;
typedef void (*Destructor)(void* addr);
struct DestructorNode {
Destructor dtor;
void* addr;
DestructorNode* next = nullptr;
};
void* allocImpl(size_t size);
void addToDestructionList(Destructor, void* addr);
void runDestructorFor(void* addr);
Page* newPage(size_t pageSize);
bool fitsInCurrentPage(size_t size);
void ensureNext(size_t size);
void* start(Page *p);
void* end(Page* p);
size_t mPageSize;
size_t mMaxAllocSize;
void* mNext;
Page* mCurrentPage;
Page* mPages;
DestructorNode* mDtorList = nullptr;
// Memory usage tracking
size_t mTotalAllocated;
size_t mWastedSpace;
size_t mPageCount;
size_t mDedicatedPageCount;
};
template <class T>
class LinearStdAllocator {
public:
typedef T value_type; // needed to implement std::allocator
typedef T* pointer; // needed to implement std::allocator
LinearStdAllocator(LinearAllocator& allocator)
: linearAllocator(allocator) {}
LinearStdAllocator(const LinearStdAllocator& other)
: linearAllocator(other.linearAllocator) {}
~LinearStdAllocator() {}
// rebind marks that allocators can be rebound to different types
template <class U>
struct rebind {
typedef LinearStdAllocator<U> other;
};
// enable allocators to be constructed from other templated types
template <class U>
LinearStdAllocator(const LinearStdAllocator<U>& other)
: linearAllocator(other.linearAllocator) {}
T* allocate(size_t num, const void* = 0) {
return (T*)(linearAllocator.alloc<void*>(num * sizeof(T)));
}
void deallocate(pointer p, size_t num) {
// attempt to rewind, but no guarantees
linearAllocator.rewindIfLastAlloc(p, num * sizeof(T));
}
// public so template copy constructor can access
LinearAllocator& linearAllocator;
};
// return that all specializations of LinearStdAllocator are interchangeable
template <class T1, class T2>
bool operator== (const LinearStdAllocator<T1>&, const LinearStdAllocator<T2>&) { return true; }
template <class T1, class T2>
bool operator!= (const LinearStdAllocator<T1>&, const LinearStdAllocator<T2>&) { return false; }
template <class T>
class LsaVector : public std::vector<T, LinearStdAllocator<T>> {
public:
LsaVector(const LinearStdAllocator<T>& allocator)
: std::vector<T, LinearStdAllocator<T>>(allocator) {}
};
}; // namespace uirenderer
}; // namespace android
#endif // ANDROID_LINEARALLOCATOR_H
|