1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util;
/**
* A class that contains utility methods related to numbers.
*
* @hide Pending API council approval
*/
public final class MathUtils {
private static final float DEG_TO_RAD = 3.1415926f / 180.0f;
private static final float RAD_TO_DEG = 180.0f / 3.1415926f;
private MathUtils() {
}
public static float abs(float v) {
return v > 0 ? v : -v;
}
public static int constrain(int amount, int low, int high) {
return amount < low ? low : (amount > high ? high : amount);
}
public static long constrain(long amount, long low, long high) {
return amount < low ? low : (amount > high ? high : amount);
}
public static float constrain(float amount, float low, float high) {
return amount < low ? low : (amount > high ? high : amount);
}
public static float log(float a) {
return (float) Math.log(a);
}
public static float exp(float a) {
return (float) Math.exp(a);
}
public static float pow(float a, float b) {
return (float) Math.pow(a, b);
}
public static float max(float a, float b) {
return a > b ? a : b;
}
public static float max(int a, int b) {
return a > b ? a : b;
}
public static float max(float a, float b, float c) {
return a > b ? (a > c ? a : c) : (b > c ? b : c);
}
public static float max(int a, int b, int c) {
return a > b ? (a > c ? a : c) : (b > c ? b : c);
}
public static float min(float a, float b) {
return a < b ? a : b;
}
public static float min(int a, int b) {
return a < b ? a : b;
}
public static float min(float a, float b, float c) {
return a < b ? (a < c ? a : c) : (b < c ? b : c);
}
public static float min(int a, int b, int c) {
return a < b ? (a < c ? a : c) : (b < c ? b : c);
}
public static float dist(float x1, float y1, float x2, float y2) {
final float x = (x2 - x1);
final float y = (y2 - y1);
return (float) Math.hypot(x, y);
}
public static float dist(float x1, float y1, float z1, float x2, float y2, float z2) {
final float x = (x2 - x1);
final float y = (y2 - y1);
final float z = (z2 - z1);
return (float) Math.sqrt(x * x + y * y + z * z);
}
public static float mag(float a, float b) {
return (float) Math.hypot(a, b);
}
public static float mag(float a, float b, float c) {
return (float) Math.sqrt(a * a + b * b + c * c);
}
public static float sq(float v) {
return v * v;
}
public static float dot(float v1x, float v1y, float v2x, float v2y) {
return v1x * v2x + v1y * v2y;
}
public static float cross(float v1x, float v1y, float v2x, float v2y) {
return v1x * v2y - v1y * v2x;
}
public static float radians(float degrees) {
return degrees * DEG_TO_RAD;
}
public static float degrees(float radians) {
return radians * RAD_TO_DEG;
}
public static float acos(float value) {
return (float) Math.acos(value);
}
public static float asin(float value) {
return (float) Math.asin(value);
}
public static float atan(float value) {
return (float) Math.atan(value);
}
public static float atan2(float a, float b) {
return (float) Math.atan2(a, b);
}
public static float tan(float angle) {
return (float) Math.tan(angle);
}
public static float lerp(float start, float stop, float amount) {
return start + (stop - start) * amount;
}
/**
* Returns an interpolated angle in degrees between a set of start and end
* angles.
* <p>
* Unlike {@link #lerp(float, float, float)}, the direction and distance of
* travel is determined by the shortest angle between the start and end
* angles. For example, if the starting angle is 0 and the ending angle is
* 350, then the interpolated angle will be in the range [0,-10] rather
* than [0,350].
*
* @param start the starting angle in degrees
* @param end the ending angle in degrees
* @param amount the position between start and end in the range [0,1]
* where 0 is the starting angle and 1 is the ending angle
* @return the interpolated angle in degrees
*/
public static float lerpDeg(float start, float end, float amount) {
final float minAngle = (((end - start) + 180) % 360) - 180;
return minAngle * amount + start;
}
public static float norm(float start, float stop, float value) {
return (value - start) / (stop - start);
}
public static float map(float minStart, float minStop, float maxStart, float maxStop, float value) {
return maxStart + (maxStop - maxStart) * ((value - minStart) / (minStop - minStart));
}
/**
* Returns the sum of the two parameters, or throws an exception if the resulting sum would
* cause an overflow or underflow.
* @throws IllegalArgumentException when overflow or underflow would occur.
*/
public static int addOrThrow(int a, int b) throws IllegalArgumentException {
if (b == 0) {
return a;
}
if (b > 0 && a <= (Integer.MAX_VALUE - b)) {
return a + b;
}
if (b < 0 && a >= (Integer.MIN_VALUE - b)) {
return a + b;
}
throw new IllegalArgumentException("Addition overflow: " + a + " + " + b);
}
}
|