1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_RESOURCES
#include "androidfw/LoadedArsc.h"
#include <cstddef>
#include <limits>
#include "android-base/logging.h"
#include "android-base/stringprintf.h"
#include "utils/ByteOrder.h"
#include "utils/Trace.h"
#ifdef _WIN32
#ifdef ERROR
#undef ERROR
#endif
#endif
#include "androidfw/ByteBucketArray.h"
#include "androidfw/Chunk.h"
#include "androidfw/ResourceUtils.h"
#include "androidfw/Util.h"
using android::base::StringPrintf;
namespace android {
constexpr const static int kAppPackageId = 0x7f;
// Element of a TypeSpec array. See TypeSpec.
struct Type {
// The configuration for which this type defines entries.
// This is already converted to host endianness.
ResTable_config configuration;
// Pointer to the mmapped data where entry definitions are kept.
const ResTable_type* type;
};
// TypeSpec is going to be immediately proceeded by
// an array of Type structs, all in the same block of memory.
struct TypeSpec {
// Pointer to the mmapped data where flags are kept.
// Flags denote whether the resource entry is public
// and under which configurations it varies.
const ResTable_typeSpec* type_spec;
// The number of types that follow this struct.
// There is a type for each configuration
// that entries are defined for.
size_t type_count;
// Trick to easily access a variable number of Type structs
// proceeding this struct, and to ensure their alignment.
const Type types[0];
};
// TypeSpecPtr points to the block of memory that holds
// a TypeSpec struct, followed by an array of Type structs.
// TypeSpecPtr is a managed pointer that knows how to delete
// itself.
using TypeSpecPtr = util::unique_cptr<TypeSpec>;
namespace {
// Builder that helps accumulate Type structs and then create a single
// contiguous block of memory to store both the TypeSpec struct and
// the Type structs.
class TypeSpecPtrBuilder {
public:
TypeSpecPtrBuilder(const ResTable_typeSpec* header) : header_(header) {}
void AddType(const ResTable_type* type) {
ResTable_config config;
config.copyFromDtoH(type->config);
types_.push_back(Type{config, type});
}
TypeSpecPtr Build() {
// Check for overflow.
if ((std::numeric_limits<size_t>::max() - sizeof(TypeSpec)) / sizeof(Type) < types_.size()) {
return {};
}
TypeSpec* type_spec = (TypeSpec*)::malloc(sizeof(TypeSpec) + (types_.size() * sizeof(Type)));
type_spec->type_spec = header_;
type_spec->type_count = types_.size();
memcpy(type_spec + 1, types_.data(), types_.size() * sizeof(Type));
return TypeSpecPtr(type_spec);
}
private:
DISALLOW_COPY_AND_ASSIGN(TypeSpecPtrBuilder);
const ResTable_typeSpec* header_;
std::vector<Type> types_;
};
} // namespace
bool LoadedPackage::FindEntry(uint8_t type_idx, uint16_t entry_idx, const ResTable_config& config,
LoadedArscEntry* out_entry, ResTable_config* out_selected_config,
uint32_t* out_flags) const {
ATRACE_CALL();
// If the type IDs are offset in this package, we need to take that into account when searching
// for a type.
const TypeSpecPtr& ptr = type_specs_[type_idx - type_id_offset_];
if (ptr == nullptr) {
return false;
}
// Don't bother checking if the entry ID is larger than
// the number of entries.
if (entry_idx >= dtohl(ptr->type_spec->entryCount)) {
return false;
}
const ResTable_config* best_config = nullptr;
const ResTable_type* best_type = nullptr;
uint32_t best_offset = 0;
for (uint32_t i = 0; i < ptr->type_count; i++) {
const Type* type = &ptr->types[i];
if (type->configuration.match(config) &&
(best_config == nullptr || type->configuration.isBetterThan(*best_config, &config))) {
// The configuration matches and is better than the previous selection.
// Find the entry value if it exists for this configuration.
size_t entry_count = dtohl(type->type->entryCount);
if (entry_idx < entry_count) {
const uint32_t* entry_offsets = reinterpret_cast<const uint32_t*>(
reinterpret_cast<const uint8_t*>(type->type) + dtohs(type->type->header.headerSize));
const uint32_t offset = dtohl(entry_offsets[entry_idx]);
if (offset != ResTable_type::NO_ENTRY) {
// There is an entry for this resource, record it.
best_config = &type->configuration;
best_type = type->type;
best_offset = offset + dtohl(type->type->entriesStart);
}
}
}
}
if (best_type == nullptr) {
return false;
}
const uint32_t* flags = reinterpret_cast<const uint32_t*>(ptr->type_spec + 1);
*out_flags = dtohl(flags[entry_idx]);
*out_selected_config = *best_config;
const ResTable_entry* best_entry = reinterpret_cast<const ResTable_entry*>(
reinterpret_cast<const uint8_t*>(best_type) + best_offset);
out_entry->entry = best_entry;
out_entry->type_string_ref = StringPoolRef(&type_string_pool_, best_type->id - 1);
out_entry->entry_string_ref = StringPoolRef(&key_string_pool_, dtohl(best_entry->key.index));
return true;
}
// The destructor gets generated into arbitrary translation units
// if left implicit, which causes the compiler to complain about
// forward declarations and incomplete types.
LoadedArsc::~LoadedArsc() {}
bool LoadedArsc::FindEntry(uint32_t resid, const ResTable_config& config,
LoadedArscEntry* out_entry, ResTable_config* out_selected_config,
uint32_t* out_flags) const {
ATRACE_CALL();
const uint8_t package_id = get_package_id(resid);
const uint8_t type_id = get_type_id(resid);
const uint16_t entry_id = get_entry_id(resid);
if (type_id == 0) {
LOG(ERROR) << "Invalid ID 0x" << std::hex << resid << std::dec << ".";
return false;
}
for (const auto& loaded_package : packages_) {
if (loaded_package->package_id_ == package_id) {
return loaded_package->FindEntry(type_id - 1, entry_id, config, out_entry,
out_selected_config, out_flags);
}
}
return false;
}
const LoadedPackage* LoadedArsc::GetPackageForId(uint32_t resid) const {
const uint8_t package_id = get_package_id(resid);
for (const auto& loaded_package : packages_) {
if (loaded_package->package_id_ == package_id) {
return loaded_package.get();
}
}
return nullptr;
}
static bool VerifyType(const Chunk& chunk) {
ATRACE_CALL();
const ResTable_type* header = chunk.header<ResTable_type, kResTableTypeMinSize>();
const size_t entry_count = dtohl(header->entryCount);
if (entry_count > std::numeric_limits<uint16_t>::max()) {
LOG(ERROR) << "Too many entries in RES_TABLE_TYPE_TYPE.";
return false;
}
// Make sure that there is enough room for the entry offsets.
const size_t offsets_offset = chunk.header_size();
const size_t entries_offset = dtohl(header->entriesStart);
const size_t offsets_length = sizeof(uint32_t) * entry_count;
if (offsets_offset + offsets_length > entries_offset) {
LOG(ERROR) << "Entry offsets overlap actual entry data.";
return false;
}
if (entries_offset > chunk.size()) {
LOG(ERROR) << "Entry offsets extend beyond chunk.";
return false;
}
if (entries_offset & 0x03) {
LOG(ERROR) << "Entries start at unaligned address.";
return false;
}
// Check each entry offset.
const uint32_t* offsets =
reinterpret_cast<const uint32_t*>(reinterpret_cast<const uint8_t*>(header) + offsets_offset);
for (size_t i = 0; i < entry_count; i++) {
uint32_t offset = dtohl(offsets[i]);
if (offset != ResTable_type::NO_ENTRY) {
// Check that the offset is aligned.
if (offset & 0x03) {
LOG(ERROR) << "Entry offset at index " << i << " is not 4-byte aligned.";
return false;
}
// Check that the offset doesn't overflow.
if (offset > std::numeric_limits<uint32_t>::max() - entries_offset) {
// Overflow in offset.
LOG(ERROR) << "Entry offset at index " << i << " is too large.";
return false;
}
offset += entries_offset;
if (offset > chunk.size() - sizeof(ResTable_entry)) {
LOG(ERROR) << "Entry offset at index " << i << " is too large. No room for ResTable_entry.";
return false;
}
const ResTable_entry* entry = reinterpret_cast<const ResTable_entry*>(
reinterpret_cast<const uint8_t*>(header) + offset);
const size_t entry_size = dtohs(entry->size);
if (entry_size < sizeof(*entry)) {
LOG(ERROR) << "ResTable_entry size " << entry_size << " is too small.";
return false;
}
// Check the declared entrySize.
if (entry_size > chunk.size() || offset > chunk.size() - entry_size) {
LOG(ERROR) << "ResTable_entry size " << entry_size << " is too large.";
return false;
}
// If this is a map entry, then keep validating.
if (entry_size >= sizeof(ResTable_map_entry)) {
const ResTable_map_entry* map = reinterpret_cast<const ResTable_map_entry*>(entry);
const size_t map_entry_count = dtohl(map->count);
size_t map_entries_start = offset + entry_size;
if (map_entries_start & 0x03) {
LOG(ERROR) << "Map entries start at unaligned offset.";
return false;
}
// Each entry is sizeof(ResTable_map) big.
if (map_entry_count > ((chunk.size() - map_entries_start) / sizeof(ResTable_map))) {
LOG(ERROR) << "Too many map entries in ResTable_map_entry.";
return false;
}
// Great, all the map entries fit!.
} else {
// There needs to be room for one Res_value struct.
if (offset + entry_size > chunk.size() - sizeof(Res_value)) {
LOG(ERROR) << "No room for Res_value after ResTable_entry.";
return false;
}
const Res_value* value = reinterpret_cast<const Res_value*>(
reinterpret_cast<const uint8_t*>(entry) + entry_size);
const size_t value_size = dtohs(value->size);
if (value_size < sizeof(Res_value)) {
LOG(ERROR) << "Res_value is too small.";
return false;
}
if (value_size > chunk.size() || offset + entry_size > chunk.size() - value_size) {
LOG(ERROR) << "Res_value size is too large.";
return false;
}
}
}
}
return true;
}
void LoadedPackage::CollectConfigurations(bool exclude_mipmap,
std::set<ResTable_config>* out_configs) const {
const static std::u16string kMipMap = u"mipmap";
const size_t type_count = type_specs_.size();
for (size_t i = 0; i < type_count; i++) {
const util::unique_cptr<TypeSpec>& type_spec = type_specs_[i];
if (type_spec != nullptr) {
if (exclude_mipmap) {
const int type_idx = type_spec->type_spec->id - 1;
size_t type_name_len;
const char16_t* type_name16 = type_string_pool_.stringAt(type_idx, &type_name_len);
if (type_name16 != nullptr) {
if (kMipMap.compare(0, std::u16string::npos, type_name16, type_name_len) == 0) {
// This is a mipmap type, skip collection.
continue;
}
}
const char* type_name = type_string_pool_.string8At(type_idx, &type_name_len);
if (type_name != nullptr) {
if (strncmp(type_name, "mipmap", type_name_len) == 0) {
// This is a mipmap type, skip collection.
continue;
}
}
}
for (size_t j = 0; j < type_spec->type_count; j++) {
out_configs->insert(type_spec->types[j].configuration);
}
}
}
}
void LoadedPackage::CollectLocales(bool canonicalize, std::set<std::string>* out_locales) const {
char temp_locale[RESTABLE_MAX_LOCALE_LEN];
const size_t type_count = type_specs_.size();
for (size_t i = 0; i < type_count; i++) {
const util::unique_cptr<TypeSpec>& type_spec = type_specs_[i];
if (type_spec != nullptr) {
for (size_t j = 0; j < type_spec->type_count; j++) {
const ResTable_config& configuration = type_spec->types[j].configuration;
if (configuration.locale != 0) {
configuration.getBcp47Locale(temp_locale, canonicalize);
std::string locale(temp_locale);
out_locales->insert(std::move(locale));
}
}
}
}
}
uint32_t LoadedPackage::FindEntryByName(const std::u16string& type_name,
const std::u16string& entry_name) const {
ssize_t type_idx = type_string_pool_.indexOfString(type_name.data(), type_name.size());
if (type_idx < 0) {
return 0u;
}
ssize_t key_idx = key_string_pool_.indexOfString(entry_name.data(), entry_name.size());
if (key_idx < 0) {
return 0u;
}
const TypeSpec* type_spec = type_specs_[type_idx].get();
if (type_spec == nullptr) {
return 0u;
}
for (size_t ti = 0; ti < type_spec->type_count; ti++) {
const Type* type = &type_spec->types[ti];
size_t entry_count = dtohl(type->type->entryCount);
for (size_t entry_idx = 0; entry_idx < entry_count; entry_idx++) {
const uint32_t* entry_offsets = reinterpret_cast<const uint32_t*>(
reinterpret_cast<const uint8_t*>(type->type) + dtohs(type->type->header.headerSize));
const uint32_t offset = dtohl(entry_offsets[entry_idx]);
if (offset != ResTable_type::NO_ENTRY) {
const ResTable_entry* entry =
reinterpret_cast<const ResTable_entry*>(reinterpret_cast<const uint8_t*>(type->type) +
dtohl(type->type->entriesStart) + offset);
if (dtohl(entry->key.index) == static_cast<uint32_t>(key_idx)) {
// The package ID will be overridden by the caller (due to runtime assignment of package
// IDs for shared libraries).
return make_resid(0x00, type_idx + type_id_offset_ + 1, entry_idx);
}
}
}
}
return 0u;
}
std::unique_ptr<LoadedPackage> LoadedPackage::Load(const Chunk& chunk) {
ATRACE_CALL();
std::unique_ptr<LoadedPackage> loaded_package{new LoadedPackage()};
constexpr size_t kMinPackageSize =
sizeof(ResTable_package) - sizeof(ResTable_package::typeIdOffset);
const ResTable_package* header = chunk.header<ResTable_package, kMinPackageSize>();
if (header == nullptr) {
LOG(ERROR) << "Chunk RES_TABLE_PACKAGE_TYPE is too small.";
return {};
}
loaded_package->package_id_ = dtohl(header->id);
if (loaded_package->package_id_ == 0) {
// Package ID of 0 means this is a shared library.
loaded_package->dynamic_ = true;
}
if (header->header.headerSize >= sizeof(ResTable_package)) {
uint32_t type_id_offset = dtohl(header->typeIdOffset);
if (type_id_offset > std::numeric_limits<uint8_t>::max()) {
LOG(ERROR) << "Type ID offset in RES_TABLE_PACKAGE_TYPE is too large.";
return {};
}
loaded_package->type_id_offset_ = static_cast<int>(type_id_offset);
}
util::ReadUtf16StringFromDevice(header->name, arraysize(header->name),
&loaded_package->package_name_);
// A TypeSpec builder. We use this to accumulate the set of Types
// available for a TypeSpec, and later build a single, contiguous block
// of memory that holds all the Types together with the TypeSpec.
std::unique_ptr<TypeSpecPtrBuilder> types_builder;
// Keep track of the last seen type index. Since type IDs are 1-based,
// this records their index, which is 0-based (type ID - 1).
uint8_t last_type_idx = 0;
ChunkIterator iter(chunk.data_ptr(), chunk.data_size());
while (iter.HasNext()) {
const Chunk child_chunk = iter.Next();
switch (child_chunk.type()) {
case RES_STRING_POOL_TYPE: {
const uintptr_t pool_address =
reinterpret_cast<uintptr_t>(child_chunk.header<ResChunk_header>());
const uintptr_t header_address = reinterpret_cast<uintptr_t>(header);
if (pool_address == header_address + dtohl(header->typeStrings)) {
// This string pool is the type string pool.
status_t err = loaded_package->type_string_pool_.setTo(
child_chunk.header<ResStringPool_header>(), child_chunk.size());
if (err != NO_ERROR) {
LOG(ERROR) << "Corrupt package type string pool.";
return {};
}
} else if (pool_address == header_address + dtohl(header->keyStrings)) {
// This string pool is the key string pool.
status_t err = loaded_package->key_string_pool_.setTo(
child_chunk.header<ResStringPool_header>(), child_chunk.size());
if (err != NO_ERROR) {
LOG(ERROR) << "Corrupt package key string pool.";
return {};
}
} else {
LOG(WARNING) << "Too many string pool chunks found in package.";
}
} break;
case RES_TABLE_TYPE_SPEC_TYPE: {
ATRACE_NAME("LoadTableTypeSpec");
// Starting a new TypeSpec, so finish the old one if there was one.
if (types_builder) {
TypeSpecPtr type_spec_ptr = types_builder->Build();
if (type_spec_ptr == nullptr) {
LOG(ERROR) << "Too many type configurations, overflow detected.";
return {};
}
loaded_package->type_specs_.editItemAt(last_type_idx) = std::move(type_spec_ptr);
types_builder = {};
last_type_idx = 0;
}
const ResTable_typeSpec* type_spec = child_chunk.header<ResTable_typeSpec>();
if (type_spec == nullptr) {
LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE is too small.";
return {};
}
if (type_spec->id == 0) {
LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE has invalid ID 0.";
return {};
}
if (loaded_package->type_id_offset_ + static_cast<int>(type_spec->id) >
std::numeric_limits<uint8_t>::max()) {
LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE has out of range ID.";
return {};
}
// The data portion of this chunk contains entry_count 32bit entries,
// each one representing a set of flags.
// Here we only validate that the chunk is well formed.
const size_t entry_count = dtohl(type_spec->entryCount);
// There can only be 2^16 entries in a type, because that is the ID
// space for entries (EEEE) in the resource ID 0xPPTTEEEE.
if (entry_count > std::numeric_limits<uint16_t>::max()) {
LOG(ERROR) << "Too many entries in RES_TABLE_TYPE_SPEC_TYPE: " << entry_count << ".";
return {};
}
if (entry_count * sizeof(uint32_t) > chunk.data_size()) {
LOG(ERROR) << "Chunk too small to hold entries in RES_TABLE_TYPE_SPEC_TYPE.";
return {};
}
last_type_idx = type_spec->id - 1;
types_builder = util::make_unique<TypeSpecPtrBuilder>(type_spec);
} break;
case RES_TABLE_TYPE_TYPE: {
const ResTable_type* type = child_chunk.header<ResTable_type, kResTableTypeMinSize>();
if (type == nullptr) {
LOG(ERROR) << "Chunk RES_TABLE_TYPE_TYPE is too small.";
return {};
}
if (type->id == 0) {
LOG(ERROR) << "Chunk RES_TABLE_TYPE_TYPE has invalid ID 0.";
return {};
}
// Type chunks must be preceded by their TypeSpec chunks.
if (!types_builder || type->id - 1 != last_type_idx) {
LOG(ERROR) << "Found RES_TABLE_TYPE_TYPE chunk without "
"RES_TABLE_TYPE_SPEC_TYPE.";
return {};
}
if (!VerifyType(child_chunk)) {
return {};
}
types_builder->AddType(type);
} break;
case RES_TABLE_LIBRARY_TYPE: {
const ResTable_lib_header* lib = child_chunk.header<ResTable_lib_header>();
if (lib == nullptr) {
LOG(ERROR) << "Chunk RES_TABLE_LIBRARY_TYPE is too small.";
return {};
}
if (child_chunk.data_size() / sizeof(ResTable_lib_entry) < dtohl(lib->count)) {
LOG(ERROR) << "Chunk too small to hold entries in RES_TABLE_LIBRARY_TYPE.";
return {};
}
loaded_package->dynamic_package_map_.reserve(dtohl(lib->count));
const ResTable_lib_entry* const entry_begin =
reinterpret_cast<const ResTable_lib_entry*>(child_chunk.data_ptr());
const ResTable_lib_entry* const entry_end = entry_begin + dtohl(lib->count);
for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) {
std::string package_name;
util::ReadUtf16StringFromDevice(entry_iter->packageName,
arraysize(entry_iter->packageName), &package_name);
if (dtohl(entry_iter->packageId) >= std::numeric_limits<uint8_t>::max()) {
LOG(ERROR) << base::StringPrintf(
"Package ID %02x in RES_TABLE_LIBRARY_TYPE too large for package '%s'.",
dtohl(entry_iter->packageId), package_name.c_str());
return {};
}
loaded_package->dynamic_package_map_.emplace_back(std::move(package_name),
dtohl(entry_iter->packageId));
}
} break;
default:
LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
// Finish the last TypeSpec.
if (types_builder) {
TypeSpecPtr type_spec_ptr = types_builder->Build();
if (type_spec_ptr == nullptr) {
LOG(ERROR) << "Too many type configurations, overflow detected.";
return {};
}
loaded_package->type_specs_.editItemAt(last_type_idx) = std::move(type_spec_ptr);
}
if (iter.HadError()) {
LOG(ERROR) << iter.GetLastError();
return {};
}
return loaded_package;
}
bool LoadedArsc::LoadTable(const Chunk& chunk, bool load_as_shared_library) {
ATRACE_CALL();
const ResTable_header* header = chunk.header<ResTable_header>();
if (header == nullptr) {
LOG(ERROR) << "Chunk RES_TABLE_TYPE is too small.";
return false;
}
const size_t package_count = dtohl(header->packageCount);
size_t packages_seen = 0;
packages_.reserve(package_count);
ChunkIterator iter(chunk.data_ptr(), chunk.data_size());
while (iter.HasNext()) {
const Chunk child_chunk = iter.Next();
switch (child_chunk.type()) {
case RES_STRING_POOL_TYPE:
// Only use the first string pool. Ignore others.
if (global_string_pool_.getError() == NO_INIT) {
status_t err = global_string_pool_.setTo(child_chunk.header<ResStringPool_header>(),
child_chunk.size());
if (err != NO_ERROR) {
LOG(ERROR) << "Corrupt string pool.";
return false;
}
} else {
LOG(WARNING) << "Multiple string pool chunks found in resource table.";
}
break;
case RES_TABLE_PACKAGE_TYPE: {
if (packages_seen + 1 > package_count) {
LOG(ERROR) << "More package chunks were found than the " << package_count
<< " declared in the "
"header.";
return false;
}
packages_seen++;
std::unique_ptr<LoadedPackage> loaded_package = LoadedPackage::Load(child_chunk);
if (!loaded_package) {
return false;
}
// Mark the package as dynamic if we are forcefully loading the Apk as a shared library.
if (loaded_package->package_id_ == kAppPackageId) {
loaded_package->dynamic_ = load_as_shared_library;
}
loaded_package->system_ = system_;
packages_.push_back(std::move(loaded_package));
} break;
default:
LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
if (iter.HadError()) {
LOG(ERROR) << iter.GetLastError();
return false;
}
return true;
}
std::unique_ptr<const LoadedArsc> LoadedArsc::Load(const void* data, size_t len, bool system,
bool load_as_shared_library) {
ATRACE_CALL();
// Not using make_unique because the constructor is private.
std::unique_ptr<LoadedArsc> loaded_arsc(new LoadedArsc());
loaded_arsc->system_ = system;
ChunkIterator iter(data, len);
while (iter.HasNext()) {
const Chunk chunk = iter.Next();
switch (chunk.type()) {
case RES_TABLE_TYPE:
if (!loaded_arsc->LoadTable(chunk, load_as_shared_library)) {
return {};
}
break;
default:
LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
if (iter.HadError()) {
LOG(ERROR) << iter.GetLastError();
return {};
}
// Need to force a move for mingw32.
return std::move(loaded_arsc);
}
} // namespace android
|