1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_NDEBUG 1
#define VERTEX_DEBUG 0
#if VERTEX_DEBUG
#define DEBUG_DUMP_ALPHA_BUFFER() \
for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \
ALOGD("point %d at %f %f, alpha %f", \
i, buffer[i].x, buffer[i].y, buffer[i].alpha); \
}
#define DEBUG_DUMP_BUFFER() \
for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \
ALOGD("point %d at %f %f", i, buffer[i].x, buffer[i].y); \
}
#else
#define DEBUG_DUMP_ALPHA_BUFFER()
#define DEBUG_DUMP_BUFFER()
#endif
#include "PathTessellator.h"
#include "Matrix.h"
#include "Vector.h"
#include "Vertex.h"
#include "utils/MathUtils.h"
#include <algorithm>
#include <SkPath.h>
#include <SkPaint.h>
#include <SkPoint.h>
#include <SkGeometry.h> // WARNING: Internal Skia Header
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Log.h>
#include <utils/Trace.h>
namespace android {
namespace uirenderer {
#define OUTLINE_REFINE_THRESHOLD 0.5f
#define ROUND_CAP_THRESH 0.25f
#define PI 3.1415926535897932f
#define MAX_DEPTH 15
/**
* Extracts the x and y scale from the transform as positive values, and clamps them
*/
void PathTessellator::extractTessellationScales(const Matrix4& transform,
float* scaleX, float* scaleY) {
if (CC_LIKELY(transform.isPureTranslate())) {
*scaleX = 1.0f;
*scaleY = 1.0f;
} else {
float m00 = transform.data[Matrix4::kScaleX];
float m01 = transform.data[Matrix4::kSkewY];
float m10 = transform.data[Matrix4::kSkewX];
float m11 = transform.data[Matrix4::kScaleY];
*scaleX = MathUtils::clampTessellationScale(sqrt(m00 * m00 + m01 * m01));
*scaleY = MathUtils::clampTessellationScale(sqrt(m10 * m10 + m11 * m11));
}
}
/**
* Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset
* from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices
* will be offset by 1.0
*
* Note that we can't add and normalize the two vectors, that would result in a rectangle having an
* offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1)
*
* NOTE: assumes angles between normals 90 degrees or less
*/
inline static Vector2 totalOffsetFromNormals(const Vector2& normalA, const Vector2& normalB) {
return (normalA + normalB) / (1 + fabs(normalA.dot(normalB)));
}
/**
* Structure used for storing useful information about the SkPaint and scale used for tessellating
*/
struct PaintInfo {
public:
PaintInfo(const SkPaint* paint, const mat4& transform) :
style(paint->getStyle()), cap(paint->getStrokeCap()), isAA(paint->isAntiAlias()),
halfStrokeWidth(paint->getStrokeWidth() * 0.5f), maxAlpha(1.0f) {
// compute inverse scales
if (CC_LIKELY(transform.isPureTranslate())) {
inverseScaleX = 1.0f;
inverseScaleY = 1.0f;
} else {
float scaleX, scaleY;
PathTessellator::extractTessellationScales(transform, &scaleX, &scaleY);
inverseScaleX = 1.0f / scaleX;
inverseScaleY = 1.0f / scaleY;
}
if (isAA && halfStrokeWidth != 0 && inverseScaleX == inverseScaleY &&
2 * halfStrokeWidth < inverseScaleX) {
// AA, with non-hairline stroke, width < 1 pixel. Scale alpha and treat as hairline.
maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX;
halfStrokeWidth = 0.0f;
}
}
SkPaint::Style style;
SkPaint::Cap cap;
bool isAA;
float inverseScaleX;
float inverseScaleY;
float halfStrokeWidth;
float maxAlpha;
inline void scaleOffsetForStrokeWidth(Vector2& offset) const {
if (halfStrokeWidth == 0.0f) {
// hairline - compensate for scale
offset.x *= 0.5f * inverseScaleX;
offset.y *= 0.5f * inverseScaleY;
} else {
offset *= halfStrokeWidth;
}
}
/**
* NOTE: the input will not always be a normal, especially for sharp edges - it should be the
* result of totalOffsetFromNormals (see documentation there)
*/
inline Vector2 deriveAAOffset(const Vector2& offset) const {
return (Vector2){offset.x * 0.5f * inverseScaleX, offset.y * 0.5f * inverseScaleY};
}
/**
* Returns the number of cap divisions beyond the minimum 2 (kButt_Cap/kSquareCap will return 0)
* Should only be used when stroking and drawing caps
*/
inline int capExtraDivisions() const {
if (cap == SkPaint::kRound_Cap) {
// always use 2 points for hairline
if (halfStrokeWidth == 0.0f) return 2;
float threshold = std::min(inverseScaleX, inverseScaleY) * ROUND_CAP_THRESH;
return MathUtils::divisionsNeededToApproximateArc(halfStrokeWidth, PI, threshold);
}
return 0;
}
/**
* Outset the bounds of point data (for line endpoints or points) to account for stroke
* geometry.
*
* bounds are in pre-scaled space.
*/
void expandBoundsForStroke(Rect* bounds) const {
if (halfStrokeWidth == 0) {
// hairline, outset by (0.5f + fudge factor) in post-scaling space
bounds->outset(fabs(inverseScaleX) * (0.5f + Vertex::GeometryFudgeFactor()),
fabs(inverseScaleY) * (0.5f + Vertex::GeometryFudgeFactor()));
} else {
// non hairline, outset by half stroke width pre-scaled, and fudge factor post scaled
bounds->outset(halfStrokeWidth + fabs(inverseScaleX) * Vertex::GeometryFudgeFactor(),
halfStrokeWidth + fabs(inverseScaleY) * Vertex::GeometryFudgeFactor());
}
}
};
void getFillVerticesFromPerimeter(const std::vector<Vertex>& perimeter,
VertexBuffer& vertexBuffer) {
Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size());
int currentIndex = 0;
// zig zag between all previous points on the inside of the hull to create a
// triangle strip that fills the hull
int srcAindex = 0;
int srcBindex = perimeter.size() - 1;
while (srcAindex <= srcBindex) {
buffer[currentIndex++] = perimeter[srcAindex];
if (srcAindex == srcBindex) break;
buffer[currentIndex++] = perimeter[srcBindex];
srcAindex++;
srcBindex--;
}
}
/*
* Fills a vertexBuffer with non-alpha vertices, zig-zagging at each perimeter point to create a
* tri-strip as wide as the stroke.
*
* Uses an additional 2 vertices at the end to wrap around, closing the tri-strip
* (for a total of perimeter.size() * 2 + 2 vertices)
*/
void getStrokeVerticesFromPerimeter(const PaintInfo& paintInfo,
const std::vector<Vertex>& perimeter, VertexBuffer& vertexBuffer) {
Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size() * 2 + 2);
int currentIndex = 0;
const Vertex* last = &(perimeter[perimeter.size() - 1]);
const Vertex* current = &(perimeter[0]);
Vector2 lastNormal = {current->y - last->y, last->x - current->x};
lastNormal.normalize();
for (unsigned int i = 0; i < perimeter.size(); i++) {
const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
Vector2 nextNormal = {next->y - current->y, current->x - next->x};
nextNormal.normalize();
Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
paintInfo.scaleOffsetForStrokeWidth(totalOffset);
Vertex::set(&buffer[currentIndex++],
current->x + totalOffset.x,
current->y + totalOffset.y);
Vertex::set(&buffer[currentIndex++],
current->x - totalOffset.x,
current->y - totalOffset.y);
current = next;
lastNormal = nextNormal;
}
// wrap around to beginning
buffer[currentIndex++] = buffer[0];
buffer[currentIndex++] = buffer[1];
DEBUG_DUMP_BUFFER();
}
static inline void storeBeginEnd(const PaintInfo& paintInfo, const Vertex& center,
const Vector2& normal, Vertex* buffer, int& currentIndex, bool begin) {
Vector2 strokeOffset = normal;
paintInfo.scaleOffsetForStrokeWidth(strokeOffset);
Vector2 referencePoint = {center.x, center.y};
if (paintInfo.cap == SkPaint::kSquare_Cap) {
Vector2 rotated = {-strokeOffset.y, strokeOffset.x};
referencePoint += rotated * (begin ? -1 : 1);
}
Vertex::set(&buffer[currentIndex++], referencePoint + strokeOffset);
Vertex::set(&buffer[currentIndex++], referencePoint - strokeOffset);
}
/**
* Fills a vertexBuffer with non-alpha vertices similar to getStrokeVerticesFromPerimeter, except:
*
* 1 - Doesn't need to wrap around, since the input vertices are unclosed
*
* 2 - can zig-zag across 'extra' vertices at either end, to create round caps
*/
void getStrokeVerticesFromUnclosedVertices(const PaintInfo& paintInfo,
const std::vector<Vertex>& vertices, VertexBuffer& vertexBuffer) {
const int extra = paintInfo.capExtraDivisions();
const int allocSize = (vertices.size() + extra) * 2;
Vertex* buffer = vertexBuffer.alloc<Vertex>(allocSize);
const int lastIndex = vertices.size() - 1;
if (extra > 0) {
// tessellate both round caps
float beginTheta = atan2(
- (vertices[0].x - vertices[1].x),
vertices[0].y - vertices[1].y);
float endTheta = atan2(
- (vertices[lastIndex].x - vertices[lastIndex - 1].x),
vertices[lastIndex].y - vertices[lastIndex - 1].y);
const float dTheta = PI / (extra + 1);
int capOffset;
for (int i = 0; i < extra; i++) {
if (i < extra / 2) {
capOffset = extra - 2 * i - 1;
} else {
capOffset = 2 * i - extra;
}
beginTheta += dTheta;
Vector2 beginRadialOffset = {cosf(beginTheta), sinf(beginTheta)};
paintInfo.scaleOffsetForStrokeWidth(beginRadialOffset);
Vertex::set(&buffer[capOffset],
vertices[0].x + beginRadialOffset.x,
vertices[0].y + beginRadialOffset.y);
endTheta += dTheta;
Vector2 endRadialOffset = {cosf(endTheta), sinf(endTheta)};
paintInfo.scaleOffsetForStrokeWidth(endRadialOffset);
Vertex::set(&buffer[allocSize - 1 - capOffset],
vertices[lastIndex].x + endRadialOffset.x,
vertices[lastIndex].y + endRadialOffset.y);
}
}
int currentIndex = extra;
const Vertex* last = &(vertices[0]);
const Vertex* current = &(vertices[1]);
Vector2 lastNormal = {current->y - last->y, last->x - current->x};
lastNormal.normalize();
storeBeginEnd(paintInfo, vertices[0], lastNormal, buffer, currentIndex, true);
for (unsigned int i = 1; i < vertices.size() - 1; i++) {
const Vertex* next = &(vertices[i + 1]);
Vector2 nextNormal = {next->y - current->y, current->x - next->x};
nextNormal.normalize();
Vector2 strokeOffset = totalOffsetFromNormals(lastNormal, nextNormal);
paintInfo.scaleOffsetForStrokeWidth(strokeOffset);
Vector2 center = {current->x, current->y};
Vertex::set(&buffer[currentIndex++], center + strokeOffset);
Vertex::set(&buffer[currentIndex++], center - strokeOffset);
current = next;
lastNormal = nextNormal;
}
storeBeginEnd(paintInfo, vertices[lastIndex], lastNormal, buffer, currentIndex, false);
DEBUG_DUMP_BUFFER();
}
/**
* Populates a vertexBuffer with AlphaVertices to create an anti-aliased fill shape tessellation
*
* 1 - create the AA perimeter of unit width, by zig-zagging at each point around the perimeter of
* the shape (using 2 * perimeter.size() vertices)
*
* 2 - wrap around to the beginning to complete the perimeter (2 vertices)
*
* 3 - zig zag back and forth inside the shape to fill it (using perimeter.size() vertices)
*/
void getFillVerticesFromPerimeterAA(const PaintInfo& paintInfo,
const std::vector<Vertex>& perimeter, VertexBuffer& vertexBuffer,
float maxAlpha = 1.0f) {
AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(perimeter.size() * 3 + 2);
// generate alpha points - fill Alpha vertex gaps in between each point with
// alpha 0 vertex, offset by a scaled normal.
int currentIndex = 0;
const Vertex* last = &(perimeter[perimeter.size() - 1]);
const Vertex* current = &(perimeter[0]);
Vector2 lastNormal = {current->y - last->y, last->x - current->x};
lastNormal.normalize();
for (unsigned int i = 0; i < perimeter.size(); i++) {
const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
Vector2 nextNormal = {next->y - current->y, current->x - next->x};
nextNormal.normalize();
// AA point offset from original point is that point's normal, such that each side is offset
// by .5 pixels
Vector2 totalOffset = paintInfo.deriveAAOffset(totalOffsetFromNormals(lastNormal, nextNormal));
AlphaVertex::set(&buffer[currentIndex++],
current->x + totalOffset.x,
current->y + totalOffset.y,
0.0f);
AlphaVertex::set(&buffer[currentIndex++],
current->x - totalOffset.x,
current->y - totalOffset.y,
maxAlpha);
current = next;
lastNormal = nextNormal;
}
// wrap around to beginning
buffer[currentIndex++] = buffer[0];
buffer[currentIndex++] = buffer[1];
// zig zag between all previous points on the inside of the hull to create a
// triangle strip that fills the hull, repeating the first inner point to
// create degenerate tris to start inside path
int srcAindex = 0;
int srcBindex = perimeter.size() - 1;
while (srcAindex <= srcBindex) {
buffer[currentIndex++] = buffer[srcAindex * 2 + 1];
if (srcAindex == srcBindex) break;
buffer[currentIndex++] = buffer[srcBindex * 2 + 1];
srcAindex++;
srcBindex--;
}
DEBUG_DUMP_BUFFER();
}
/**
* Stores geometry for a single, AA-perimeter (potentially rounded) cap
*
* For explanation of constants and general methodoloyg, see comments for
* getStrokeVerticesFromUnclosedVerticesAA() below.
*/
inline static void storeCapAA(const PaintInfo& paintInfo, const std::vector<Vertex>& vertices,
AlphaVertex* buffer, bool isFirst, Vector2 normal, int offset) {
const int extra = paintInfo.capExtraDivisions();
const int extraOffset = (extra + 1) / 2;
const int capIndex = isFirst
? 2 * offset + 6 + 2 * (extra + extraOffset)
: offset + 2 + 2 * extraOffset;
if (isFirst) normal *= -1;
// TODO: this normal should be scaled by radialScale if extra != 0, see totalOffsetFromNormals()
Vector2 AAOffset = paintInfo.deriveAAOffset(normal);
Vector2 strokeOffset = normal;
paintInfo.scaleOffsetForStrokeWidth(strokeOffset);
Vector2 outerOffset = strokeOffset + AAOffset;
Vector2 innerOffset = strokeOffset - AAOffset;
Vector2 capAAOffset = {0, 0};
if (paintInfo.cap != SkPaint::kRound_Cap) {
// if the cap is square or butt, the inside primary cap vertices will be inset in two
// directions - both normal to the stroke, and parallel to it.
capAAOffset = (Vector2){-AAOffset.y, AAOffset.x};
}
// determine referencePoint, the center point for the 4 primary cap vertices
const Vertex& point = isFirst ? vertices.front() : vertices.back();
Vector2 referencePoint = {point.x, point.y};
if (paintInfo.cap == SkPaint::kSquare_Cap) {
// To account for square cap, move the primary cap vertices (that create the AA edge) by the
// stroke offset vector (rotated to be parallel to the stroke)
Vector2 rotated = {-strokeOffset.y, strokeOffset.x};
referencePoint += rotated;
}
AlphaVertex::set(&buffer[capIndex + 0],
referencePoint.x + outerOffset.x + capAAOffset.x,
referencePoint.y + outerOffset.y + capAAOffset.y,
0.0f);
AlphaVertex::set(&buffer[capIndex + 1],
referencePoint.x + innerOffset.x - capAAOffset.x,
referencePoint.y + innerOffset.y - capAAOffset.y,
paintInfo.maxAlpha);
bool isRound = paintInfo.cap == SkPaint::kRound_Cap;
const int postCapIndex = (isRound && isFirst) ? (2 * extraOffset - 2) : capIndex + (2 * extra);
AlphaVertex::set(&buffer[postCapIndex + 2],
referencePoint.x - outerOffset.x + capAAOffset.x,
referencePoint.y - outerOffset.y + capAAOffset.y,
0.0f);
AlphaVertex::set(&buffer[postCapIndex + 3],
referencePoint.x - innerOffset.x - capAAOffset.x,
referencePoint.y - innerOffset.y - capAAOffset.y,
paintInfo.maxAlpha);
if (isRound) {
const float dTheta = PI / (extra + 1);
const float radialScale = 2.0f / (1 + cos(dTheta));
float theta = atan2(normal.y, normal.x);
int capPerimIndex = capIndex + 2;
for (int i = 0; i < extra; i++) {
theta += dTheta;
Vector2 radialOffset = {cosf(theta), sinf(theta)};
// scale to compensate for pinching at sharp angles, see totalOffsetFromNormals()
radialOffset *= radialScale;
AAOffset = paintInfo.deriveAAOffset(radialOffset);
paintInfo.scaleOffsetForStrokeWidth(radialOffset);
AlphaVertex::set(&buffer[capPerimIndex++],
referencePoint.x + radialOffset.x + AAOffset.x,
referencePoint.y + radialOffset.y + AAOffset.y,
0.0f);
AlphaVertex::set(&buffer[capPerimIndex++],
referencePoint.x + radialOffset.x - AAOffset.x,
referencePoint.y + radialOffset.y - AAOffset.y,
paintInfo.maxAlpha);
if (isFirst && i == extra - extraOffset) {
//copy most recent two points to first two points
buffer[0] = buffer[capPerimIndex - 2];
buffer[1] = buffer[capPerimIndex - 1];
capPerimIndex = 2; // start writing the rest of the round cap at index 2
}
}
if (isFirst) {
const int startCapFillIndex = capIndex + 2 * (extra - extraOffset) + 4;
int capFillIndex = startCapFillIndex;
for (int i = 0; i < extra + 2; i += 2) {
buffer[capFillIndex++] = buffer[1 + i];
// TODO: to support odd numbers of divisions, break here on the last iteration
buffer[capFillIndex++] = buffer[startCapFillIndex - 3 - i];
}
} else {
int capFillIndex = 6 * vertices.size() + 2 + 6 * extra - (extra + 2);
for (int i = 0; i < extra + 2; i += 2) {
buffer[capFillIndex++] = buffer[capIndex + 1 + i];
// TODO: to support odd numbers of divisions, break here on the last iteration
buffer[capFillIndex++] = buffer[capIndex + 3 + 2 * extra - i];
}
}
return;
}
if (isFirst) {
buffer[0] = buffer[postCapIndex + 2];
buffer[1] = buffer[postCapIndex + 3];
buffer[postCapIndex + 4] = buffer[1]; // degenerate tris (the only two!)
buffer[postCapIndex + 5] = buffer[postCapIndex + 1];
} else {
buffer[6 * vertices.size()] = buffer[postCapIndex + 1];
buffer[6 * vertices.size() + 1] = buffer[postCapIndex + 3];
}
}
/*
the geometry for an aa, capped stroke consists of the following:
# vertices | function
----------------------------------------------------------------------
a) 2 | Start AA perimeter
b) 2, 2 * roundDivOff | First half of begin cap's perimeter
|
2 * middlePts | 'Outer' or 'Top' AA perimeter half (between caps)
|
a) 4 | End cap's
b) 2, 2 * roundDivs, 2 | AA perimeter
|
2 * middlePts | 'Inner' or 'bottom' AA perimeter half
|
a) 6 | Begin cap's perimeter
b) 2, 2*(rD - rDO + 1), | Last half of begin cap's perimeter
roundDivs, 2 |
|
2 * middlePts | Stroke's full opacity center strip
|
a) 2 | end stroke
b) 2, roundDivs | (and end cap fill, for round)
Notes:
* rows starting with 'a)' denote the Butt or Square cap vertex use, 'b)' denote Round
* 'middlePts' is (number of points in the unclosed input vertex list, minus 2) times two
* 'roundDivs' or 'rD' is the number of extra vertices (beyond the minimum of 2) that define the
round cap's shape, and is at least two. This will increase with cap size to sufficiently
define the cap's level of tessellation.
* 'roundDivOffset' or 'rDO' is the point about halfway along the start cap's round perimeter, where
the stream of vertices for the AA perimeter starts. By starting and ending the perimeter at
this offset, the fill of the stroke is drawn from this point with minimal extra vertices.
This means the outer perimeter starts at:
outerIndex = (2) OR (2 + 2 * roundDivOff)
the inner perimeter (since it is filled in reverse) starts at:
innerIndex = outerIndex + (4 * middlePts) + ((4) OR (4 + 2 * roundDivs)) - 1
the stroke starts at:
strokeIndex = innerIndex + 1 + ((6) OR (6 + 3 * roundDivs - 2 * roundDivOffset))
The total needed allocated space is either:
2 + 4 + 6 + 2 + 3 * (2 * middlePts) = 14 + 6 * middlePts = 2 + 6 * pts
or, for rounded caps:
(2 + 2 * rDO) + (4 + 2 * rD) + (2 * (rD - rDO + 1)
+ roundDivs + 4) + (2 + roundDivs) + 3 * (2 * middlePts)
= 14 + 6 * middlePts + 6 * roundDivs
= 2 + 6 * pts + 6 * roundDivs
*/
void getStrokeVerticesFromUnclosedVerticesAA(const PaintInfo& paintInfo,
const std::vector<Vertex>& vertices, VertexBuffer& vertexBuffer) {
const int extra = paintInfo.capExtraDivisions();
const int allocSize = 6 * vertices.size() + 2 + 6 * extra;
AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(allocSize);
const int extraOffset = (extra + 1) / 2;
int offset = 2 * (vertices.size() - 2);
// there is no outer/inner here, using them for consistency with below approach
int currentAAOuterIndex = 2 + 2 * extraOffset;
int currentAAInnerIndex = currentAAOuterIndex + (2 * offset) + 3 + (2 * extra);
int currentStrokeIndex = currentAAInnerIndex + 7 + (3 * extra - 2 * extraOffset);
const Vertex* last = &(vertices[0]);
const Vertex* current = &(vertices[1]);
Vector2 lastNormal = {current->y - last->y, last->x - current->x};
lastNormal.normalize();
// TODO: use normal from bezier traversal for cap, instead of from vertices
storeCapAA(paintInfo, vertices, buffer, true, lastNormal, offset);
for (unsigned int i = 1; i < vertices.size() - 1; i++) {
const Vertex* next = &(vertices[i + 1]);
Vector2 nextNormal = {next->y - current->y, current->x - next->x};
nextNormal.normalize();
Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset);
Vector2 innerOffset = totalOffset;
paintInfo.scaleOffsetForStrokeWidth(innerOffset);
Vector2 outerOffset = innerOffset + AAOffset;
innerOffset -= AAOffset;
AlphaVertex::set(&buffer[currentAAOuterIndex++],
current->x + outerOffset.x,
current->y + outerOffset.y,
0.0f);
AlphaVertex::set(&buffer[currentAAOuterIndex++],
current->x + innerOffset.x,
current->y + innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentStrokeIndex++],
current->x + innerOffset.x,
current->y + innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentStrokeIndex++],
current->x - innerOffset.x,
current->y - innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentAAInnerIndex--],
current->x - innerOffset.x,
current->y - innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentAAInnerIndex--],
current->x - outerOffset.x,
current->y - outerOffset.y,
0.0f);
current = next;
lastNormal = nextNormal;
}
// TODO: use normal from bezier traversal for cap, instead of from vertices
storeCapAA(paintInfo, vertices, buffer, false, lastNormal, offset);
DEBUG_DUMP_ALPHA_BUFFER();
}
void getStrokeVerticesFromPerimeterAA(const PaintInfo& paintInfo,
const std::vector<Vertex>& perimeter, VertexBuffer& vertexBuffer) {
AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * perimeter.size() + 8);
int offset = 2 * perimeter.size() + 3;
int currentAAOuterIndex = 0;
int currentStrokeIndex = offset;
int currentAAInnerIndex = offset * 2;
const Vertex* last = &(perimeter[perimeter.size() - 1]);
const Vertex* current = &(perimeter[0]);
Vector2 lastNormal = {current->y - last->y, last->x - current->x};
lastNormal.normalize();
for (unsigned int i = 0; i < perimeter.size(); i++) {
const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
Vector2 nextNormal = {next->y - current->y, current->x - next->x};
nextNormal.normalize();
Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset);
Vector2 innerOffset = totalOffset;
paintInfo.scaleOffsetForStrokeWidth(innerOffset);
Vector2 outerOffset = innerOffset + AAOffset;
innerOffset -= AAOffset;
AlphaVertex::set(&buffer[currentAAOuterIndex++],
current->x + outerOffset.x,
current->y + outerOffset.y,
0.0f);
AlphaVertex::set(&buffer[currentAAOuterIndex++],
current->x + innerOffset.x,
current->y + innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentStrokeIndex++],
current->x + innerOffset.x,
current->y + innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentStrokeIndex++],
current->x - innerOffset.x,
current->y - innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentAAInnerIndex++],
current->x - innerOffset.x,
current->y - innerOffset.y,
paintInfo.maxAlpha);
AlphaVertex::set(&buffer[currentAAInnerIndex++],
current->x - outerOffset.x,
current->y - outerOffset.y,
0.0f);
current = next;
lastNormal = nextNormal;
}
// wrap each strip around to beginning, creating degenerate tris to bridge strips
buffer[currentAAOuterIndex++] = buffer[0];
buffer[currentAAOuterIndex++] = buffer[1];
buffer[currentAAOuterIndex++] = buffer[1];
buffer[currentStrokeIndex++] = buffer[offset];
buffer[currentStrokeIndex++] = buffer[offset + 1];
buffer[currentStrokeIndex++] = buffer[offset + 1];
buffer[currentAAInnerIndex++] = buffer[2 * offset];
buffer[currentAAInnerIndex++] = buffer[2 * offset + 1];
// don't need to create last degenerate tri
DEBUG_DUMP_ALPHA_BUFFER();
}
void PathTessellator::tessellatePath(const SkPath &path, const SkPaint* paint,
const mat4& transform, VertexBuffer& vertexBuffer) {
ATRACE_CALL();
const PaintInfo paintInfo(paint, transform);
std::vector<Vertex> tempVertices;
float threshInvScaleX = paintInfo.inverseScaleX;
float threshInvScaleY = paintInfo.inverseScaleY;
if (paintInfo.style == SkPaint::kStroke_Style) {
// alter the bezier recursion threshold values we calculate in order to compensate for
// expansion done after the path vertices are found
SkRect bounds = path.getBounds();
if (!bounds.isEmpty()) {
threshInvScaleX *= bounds.width() / (bounds.width() + paint->getStrokeWidth());
threshInvScaleY *= bounds.height() / (bounds.height() + paint->getStrokeWidth());
}
}
// force close if we're filling the path, since fill path expects closed perimeter.
bool forceClose = paintInfo.style != SkPaint::kStroke_Style;
PathApproximationInfo approximationInfo(threshInvScaleX, threshInvScaleY,
OUTLINE_REFINE_THRESHOLD);
bool wasClosed = approximatePathOutlineVertices(path, forceClose,
approximationInfo, tempVertices);
if (!tempVertices.size()) {
// path was empty, return without allocating vertex buffer
return;
}
#if VERTEX_DEBUG
for (unsigned int i = 0; i < tempVertices.size(); i++) {
ALOGD("orig path: point at %f %f",
tempVertices[i].x, tempVertices[i].y);
}
#endif
if (paintInfo.style == SkPaint::kStroke_Style) {
if (!paintInfo.isAA) {
if (wasClosed) {
getStrokeVerticesFromPerimeter(paintInfo, tempVertices, vertexBuffer);
} else {
getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer);
}
} else {
if (wasClosed) {
getStrokeVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer);
} else {
getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer);
}
}
} else {
// For kStrokeAndFill style, the path should be adjusted externally.
// It will be treated as a fill here.
if (!paintInfo.isAA) {
getFillVerticesFromPerimeter(tempVertices, vertexBuffer);
} else {
getFillVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer);
}
}
Rect bounds(path.getBounds());
paintInfo.expandBoundsForStroke(&bounds);
vertexBuffer.setBounds(bounds);
vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone);
}
template <class TYPE>
static void instanceVertices(VertexBuffer& srcBuffer, VertexBuffer& dstBuffer,
const float* points, int count, Rect& bounds) {
bounds.set(points[0], points[1], points[0], points[1]);
int numPoints = count / 2;
int verticesPerPoint = srcBuffer.getVertexCount();
dstBuffer.alloc<TYPE>(numPoints * verticesPerPoint + (numPoints - 1) * 2);
for (int i = 0; i < count; i += 2) {
bounds.expandToCover(points[i + 0], points[i + 1]);
dstBuffer.copyInto<TYPE>(srcBuffer, points[i + 0], points[i + 1]);
}
dstBuffer.createDegenerateSeparators<TYPE>(verticesPerPoint);
}
void PathTessellator::tessellatePoints(const float* points, int count, const SkPaint* paint,
const mat4& transform, VertexBuffer& vertexBuffer) {
const PaintInfo paintInfo(paint, transform);
// determine point shape
SkPath path;
float radius = paintInfo.halfStrokeWidth;
if (radius == 0.0f) radius = 0.5f;
if (paintInfo.cap == SkPaint::kRound_Cap) {
path.addCircle(0, 0, radius);
} else {
path.addRect(-radius, -radius, radius, radius);
}
// calculate outline
std::vector<Vertex> outlineVertices;
PathApproximationInfo approximationInfo(paintInfo.inverseScaleX, paintInfo.inverseScaleY,
OUTLINE_REFINE_THRESHOLD);
approximatePathOutlineVertices(path, true, approximationInfo, outlineVertices);
if (!outlineVertices.size()) return;
Rect bounds;
// tessellate, then duplicate outline across points
VertexBuffer tempBuffer;
if (!paintInfo.isAA) {
getFillVerticesFromPerimeter(outlineVertices, tempBuffer);
instanceVertices<Vertex>(tempBuffer, vertexBuffer, points, count, bounds);
} else {
// note: pass maxAlpha directly, since we want fill to be alpha modulated
getFillVerticesFromPerimeterAA(paintInfo, outlineVertices, tempBuffer, paintInfo.maxAlpha);
instanceVertices<AlphaVertex>(tempBuffer, vertexBuffer, points, count, bounds);
}
// expand bounds from vertex coords to pixel data
paintInfo.expandBoundsForStroke(&bounds);
vertexBuffer.setBounds(bounds);
vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone);
}
void PathTessellator::tessellateLines(const float* points, int count, const SkPaint* paint,
const mat4& transform, VertexBuffer& vertexBuffer) {
ATRACE_CALL();
const PaintInfo paintInfo(paint, transform);
const int extra = paintInfo.capExtraDivisions();
int numLines = count / 4;
int lineAllocSize;
// pre-allocate space for lines in the buffer, and degenerate tris in between
if (paintInfo.isAA) {
lineAllocSize = 6 * (2) + 2 + 6 * extra;
vertexBuffer.alloc<AlphaVertex>(numLines * lineAllocSize + (numLines - 1) * 2);
} else {
lineAllocSize = 2 * ((2) + extra);
vertexBuffer.alloc<Vertex>(numLines * lineAllocSize + (numLines - 1) * 2);
}
std::vector<Vertex> tempVertices(2);
Vertex* tempVerticesData = &tempVertices.front();
Rect bounds;
bounds.set(points[0], points[1], points[0], points[1]);
for (int i = 0; i < count; i += 4) {
Vertex::set(&(tempVerticesData[0]), points[i + 0], points[i + 1]);
Vertex::set(&(tempVerticesData[1]), points[i + 2], points[i + 3]);
if (paintInfo.isAA) {
getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer);
} else {
getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer);
}
// calculate bounds
bounds.expandToCover(tempVerticesData[0].x, tempVerticesData[0].y);
bounds.expandToCover(tempVerticesData[1].x, tempVerticesData[1].y);
}
// since multiple objects tessellated into buffer, separate them with degen tris
if (paintInfo.isAA) {
vertexBuffer.createDegenerateSeparators<AlphaVertex>(lineAllocSize);
} else {
vertexBuffer.createDegenerateSeparators<Vertex>(lineAllocSize);
}
// expand bounds from vertex coords to pixel data
paintInfo.expandBoundsForStroke(&bounds);
vertexBuffer.setBounds(bounds);
vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone);
}
///////////////////////////////////////////////////////////////////////////////
// Simple path line approximation
///////////////////////////////////////////////////////////////////////////////
bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, float threshold,
std::vector<Vertex>& outputVertices) {
PathApproximationInfo approximationInfo(1.0f, 1.0f, threshold);
return approximatePathOutlineVertices(path, true, approximationInfo, outputVertices);
}
class ClockwiseEnforcer {
public:
void addPoint(const SkPoint& point) {
double x = point.x();
double y = point.y();
if (initialized) {
sum += (x + lastX) * (y - lastY);
} else {
initialized = true;
}
lastX = x;
lastY = y;
}
void reverseVectorIfNotClockwise(std::vector<Vertex>& vertices) {
if (sum < 0) {
// negative sum implies CounterClockwise
const int size = vertices.size();
for (int i = 0; i < size / 2; i++) {
Vertex tmp = vertices[i];
int k = size - 1 - i;
vertices[i] = vertices[k];
vertices[k] = tmp;
}
}
}
private:
bool initialized = false;
double lastX = 0;
double lastY = 0;
double sum = 0;
};
bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, bool forceClose,
const PathApproximationInfo& approximationInfo, std::vector<Vertex>& outputVertices) {
ATRACE_CALL();
// TODO: to support joins other than sharp miter, join vertices should be labelled in the
// perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case.
SkPath::Iter iter(path, forceClose);
SkPoint pts[4];
SkPath::Verb v;
ClockwiseEnforcer clockwiseEnforcer;
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
switch (v) {
case SkPath::kMove_Verb:
outputVertices.push_back(Vertex{pts[0].x(), pts[0].y()});
ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y());
clockwiseEnforcer.addPoint(pts[0]);
break;
case SkPath::kClose_Verb:
ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y());
clockwiseEnforcer.addPoint(pts[0]);
break;
case SkPath::kLine_Verb:
ALOGV("kLine_Verb %f %f -> %f %f", pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y());
outputVertices.push_back(Vertex{pts[1].x(), pts[1].y()});
clockwiseEnforcer.addPoint(pts[1]);
break;
case SkPath::kQuad_Verb:
ALOGV("kQuad_Verb");
recursiveQuadraticBezierVertices(
pts[0].x(), pts[0].y(),
pts[2].x(), pts[2].y(),
pts[1].x(), pts[1].y(),
approximationInfo, outputVertices);
clockwiseEnforcer.addPoint(pts[1]);
clockwiseEnforcer.addPoint(pts[2]);
break;
case SkPath::kCubic_Verb:
ALOGV("kCubic_Verb");
recursiveCubicBezierVertices(
pts[0].x(), pts[0].y(),
pts[1].x(), pts[1].y(),
pts[3].x(), pts[3].y(),
pts[2].x(), pts[2].y(),
approximationInfo, outputVertices);
clockwiseEnforcer.addPoint(pts[1]);
clockwiseEnforcer.addPoint(pts[2]);
clockwiseEnforcer.addPoint(pts[3]);
break;
case SkPath::kConic_Verb: {
ALOGV("kConic_Verb");
SkAutoConicToQuads converter;
const SkPoint* quads = converter.computeQuads(pts, iter.conicWeight(),
approximationInfo.thresholdForConicQuads);
for (int i = 0; i < converter.countQuads(); ++i) {
const int offset = 2 * i;
recursiveQuadraticBezierVertices(
quads[offset].x(), quads[offset].y(),
quads[offset+2].x(), quads[offset+2].y(),
quads[offset+1].x(), quads[offset+1].y(),
approximationInfo, outputVertices);
}
clockwiseEnforcer.addPoint(pts[1]);
clockwiseEnforcer.addPoint(pts[2]);
break;
}
default:
static_assert(SkPath::kMove_Verb == 0
&& SkPath::kLine_Verb == 1
&& SkPath::kQuad_Verb == 2
&& SkPath::kConic_Verb == 3
&& SkPath::kCubic_Verb == 4
&& SkPath::kClose_Verb == 5
&& SkPath::kDone_Verb == 6,
"Path enum changed, new types may have been added");
break;
}
}
bool wasClosed = false;
int size = outputVertices.size();
if (size >= 2 && outputVertices[0].x == outputVertices[size - 1].x &&
outputVertices[0].y == outputVertices[size - 1].y) {
outputVertices.pop_back();
wasClosed = true;
}
// ensure output vector is clockwise
clockwiseEnforcer.reverseVectorIfNotClockwise(outputVertices);
return wasClosed;
}
///////////////////////////////////////////////////////////////////////////////
// Bezier approximation
//
// All the inputs and outputs here are in path coordinates.
// We convert the error threshold from screen coordinates into path coordinates.
///////////////////////////////////////////////////////////////////////////////
// Get a threshold in path coordinates, by scaling the thresholdSquared from screen coordinates.
// TODO: Document the math behind this algorithm.
static inline float getThreshold(const PathApproximationInfo& info, float dx, float dy) {
// multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors
float scale = (dx * dx * info.sqrInvScaleY + dy * dy * info.sqrInvScaleX);
return info.thresholdSquared * scale;
}
void PathTessellator::recursiveCubicBezierVertices(
float p1x, float p1y, float c1x, float c1y,
float p2x, float p2y, float c2x, float c2y,
const PathApproximationInfo& approximationInfo,
std::vector<Vertex>& outputVertices, int depth) {
float dx = p2x - p1x;
float dy = p2y - p1y;
float d1 = fabs((c1x - p2x) * dy - (c1y - p2y) * dx);
float d2 = fabs((c2x - p2x) * dy - (c2y - p2y) * dx);
float d = d1 + d2;
if (depth >= MAX_DEPTH
|| d * d <= getThreshold(approximationInfo, dx, dy)) {
// below thresh, draw line by adding endpoint
outputVertices.push_back(Vertex{p2x, p2y});
} else {
float p1c1x = (p1x + c1x) * 0.5f;
float p1c1y = (p1y + c1y) * 0.5f;
float p2c2x = (p2x + c2x) * 0.5f;
float p2c2y = (p2y + c2y) * 0.5f;
float c1c2x = (c1x + c2x) * 0.5f;
float c1c2y = (c1y + c2y) * 0.5f;
float p1c1c2x = (p1c1x + c1c2x) * 0.5f;
float p1c1c2y = (p1c1y + c1c2y) * 0.5f;
float p2c1c2x = (p2c2x + c1c2x) * 0.5f;
float p2c1c2y = (p2c2y + c1c2y) * 0.5f;
float mx = (p1c1c2x + p2c1c2x) * 0.5f;
float my = (p1c1c2y + p2c1c2y) * 0.5f;
recursiveCubicBezierVertices(
p1x, p1y, p1c1x, p1c1y,
mx, my, p1c1c2x, p1c1c2y,
approximationInfo, outputVertices, depth + 1);
recursiveCubicBezierVertices(
mx, my, p2c1c2x, p2c1c2y,
p2x, p2y, p2c2x, p2c2y,
approximationInfo, outputVertices, depth + 1);
}
}
void PathTessellator::recursiveQuadraticBezierVertices(
float ax, float ay,
float bx, float by,
float cx, float cy,
const PathApproximationInfo& approximationInfo,
std::vector<Vertex>& outputVertices, int depth) {
float dx = bx - ax;
float dy = by - ay;
// d is the cross product of vector (B-A) and (C-B).
float d = (cx - bx) * dy - (cy - by) * dx;
if (depth >= MAX_DEPTH
|| d * d <= getThreshold(approximationInfo, dx, dy)) {
// below thresh, draw line by adding endpoint
outputVertices.push_back(Vertex{bx, by});
} else {
float acx = (ax + cx) * 0.5f;
float bcx = (bx + cx) * 0.5f;
float acy = (ay + cy) * 0.5f;
float bcy = (by + cy) * 0.5f;
// midpoint
float mx = (acx + bcx) * 0.5f;
float my = (acy + bcy) * 0.5f;
recursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy,
approximationInfo, outputVertices, depth + 1);
recursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy,
approximationInfo, outputVertices, depth + 1);
}
}
}; // namespace uirenderer
}; // namespace android
|