1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
// This is needed for stdint.h to define INT64_MAX in C++
#define __STDC_LIMIT_MACROS
#include <math.h>
#include <algorithm>
#include <android-base/stringprintf.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <utils/Thread.h>
#include <utils/Trace.h>
#include <ui/FenceTime.h>
#include "DispSync.h"
#include "EventLog/EventLog.h"
#include "SurfaceFlinger.h"
using android::base::StringAppendF;
using std::max;
using std::min;
namespace android {
DispSync::~DispSync() = default;
DispSync::Callback::~Callback() = default;
namespace impl {
// Setting this to true adds a zero-phase tracer for correlating with hardware
// vsync events
static const bool kEnableZeroPhaseTracer = false;
// This is the threshold used to determine when hardware vsync events are
// needed to re-synchronize the software vsync model with the hardware. The
// error metric used is the mean of the squared difference between each
// present time and the nearest software-predicted vsync.
static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared
#undef LOG_TAG
#define LOG_TAG "DispSyncThread"
class DispSyncThread : public Thread {
public:
DispSyncThread(const char* name, bool showTraceDetailedInfo)
: mName(name),
mStop(false),
mModelLocked(false),
mPeriod(0),
mPhase(0),
mReferenceTime(0),
mWakeupLatency(0),
mFrameNumber(0),
mTraceDetailedInfo(showTraceDetailedInfo) {}
virtual ~DispSyncThread() {}
void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
if (mTraceDetailedInfo) ATRACE_CALL();
Mutex::Autolock lock(mMutex);
mPhase = phase;
const bool referenceTimeChanged = mReferenceTime != referenceTime;
mReferenceTime = referenceTime;
if (mPeriod != 0 && mPeriod != period && mReferenceTime != 0) {
// Inflate the reference time to be the most recent predicted
// vsync before the current time.
const nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const nsecs_t baseTime = now - mReferenceTime;
const nsecs_t numOldPeriods = baseTime / mPeriod;
mReferenceTime = mReferenceTime + (numOldPeriods)*mPeriod;
}
mPeriod = period;
if (!mModelLocked && referenceTimeChanged) {
for (auto& eventListener : mEventListeners) {
eventListener.mLastEventTime = mReferenceTime + mPhase + eventListener.mPhase;
// If mLastEventTime is after mReferenceTime (can happen when positive phase offsets
// are used) we treat it as like it happened in previous period.
if (eventListener.mLastEventTime > mReferenceTime) {
eventListener.mLastEventTime -= mPeriod;
}
}
}
if (mTraceDetailedInfo) {
ATRACE_INT64("DispSync:Period", mPeriod);
ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
ATRACE_INT64("DispSync:Reference Time", mReferenceTime);
}
ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
" mReferenceTime = %" PRId64,
mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime));
mCond.signal();
}
void stop() {
if (mTraceDetailedInfo) ATRACE_CALL();
Mutex::Autolock lock(mMutex);
mStop = true;
mCond.signal();
}
void lockModel() {
Mutex::Autolock lock(mMutex);
mModelLocked = true;
ATRACE_INT("DispSync:ModelLocked", mModelLocked);
}
void unlockModel() {
Mutex::Autolock lock(mMutex);
mModelLocked = false;
ATRACE_INT("DispSync:ModelLocked", mModelLocked);
}
virtual bool threadLoop() {
status_t err;
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
while (true) {
std::vector<CallbackInvocation> callbackInvocations;
nsecs_t targetTime = 0;
{ // Scope for lock
Mutex::Autolock lock(mMutex);
if (mTraceDetailedInfo) {
ATRACE_INT64("DispSync:Frame", mFrameNumber);
}
ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
++mFrameNumber;
if (mStop) {
return false;
}
if (mPeriod == 0) {
err = mCond.wait(mMutex);
if (err != NO_ERROR) {
ALOGE("error waiting for new events: %s (%d)", strerror(-err), err);
return false;
}
continue;
}
targetTime = computeNextEventTimeLocked(now);
bool isWakeup = false;
if (now < targetTime) {
if (mTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
if (targetTime == INT64_MAX) {
ALOGV("[%s] Waiting forever", mName);
err = mCond.wait(mMutex);
} else {
ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
err = mCond.waitRelative(mMutex, targetTime - now);
}
if (err == TIMED_OUT) {
isWakeup = true;
} else if (err != NO_ERROR) {
ALOGE("error waiting for next event: %s (%d)", strerror(-err), err);
return false;
}
}
now = systemTime(SYSTEM_TIME_MONOTONIC);
// Don't correct by more than 1.5 ms
static const nsecs_t kMaxWakeupLatency = us2ns(1500);
if (isWakeup) {
mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64;
mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
if (mTraceDetailedInfo) {
ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
}
}
callbackInvocations = gatherCallbackInvocationsLocked(now);
}
if (callbackInvocations.size() > 0) {
fireCallbackInvocations(callbackInvocations);
}
}
return false;
}
status_t addEventListener(const char* name, nsecs_t phase, DispSync::Callback* callback,
nsecs_t lastCallbackTime) {
if (mTraceDetailedInfo) ATRACE_CALL();
Mutex::Autolock lock(mMutex);
for (size_t i = 0; i < mEventListeners.size(); i++) {
if (mEventListeners[i].mCallback == callback) {
return BAD_VALUE;
}
}
EventListener listener;
listener.mName = name;
listener.mPhase = phase;
listener.mCallback = callback;
// We want to allow the firstmost future event to fire without
// allowing any past events to fire. To do this extrapolate from
// mReferenceTime the most recent hardware vsync, and pin the
// last event time there.
const nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (mPeriod != 0) {
const nsecs_t baseTime = now - mReferenceTime;
const nsecs_t numPeriodsSinceReference = baseTime / mPeriod;
const nsecs_t predictedReference = mReferenceTime + numPeriodsSinceReference * mPeriod;
const nsecs_t phaseCorrection = mPhase + listener.mPhase;
const nsecs_t predictedLastEventTime = predictedReference + phaseCorrection;
if (predictedLastEventTime >= now) {
// Make sure that the last event time does not exceed the current time.
// If it would, then back the last event time by a period.
listener.mLastEventTime = predictedLastEventTime - mPeriod;
} else {
listener.mLastEventTime = predictedLastEventTime;
}
} else {
listener.mLastEventTime = now + mPhase - mWakeupLatency;
}
if (lastCallbackTime <= 0) {
// If there is no prior callback time, try to infer one based on the
// logical last event time.
listener.mLastCallbackTime = listener.mLastEventTime + mWakeupLatency;
} else {
listener.mLastCallbackTime = lastCallbackTime;
}
mEventListeners.push_back(listener);
mCond.signal();
return NO_ERROR;
}
status_t removeEventListener(DispSync::Callback* callback, nsecs_t* outLastCallback) {
if (mTraceDetailedInfo) ATRACE_CALL();
Mutex::Autolock lock(mMutex);
for (std::vector<EventListener>::iterator it = mEventListeners.begin();
it != mEventListeners.end(); ++it) {
if (it->mCallback == callback) {
*outLastCallback = it->mLastCallbackTime;
mEventListeners.erase(it);
mCond.signal();
return NO_ERROR;
}
}
return BAD_VALUE;
}
status_t changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) {
if (mTraceDetailedInfo) ATRACE_CALL();
Mutex::Autolock lock(mMutex);
for (auto& eventListener : mEventListeners) {
if (eventListener.mCallback == callback) {
const nsecs_t oldPhase = eventListener.mPhase;
eventListener.mPhase = phase;
// Pretend that the last time this event was handled at the same frame but with the
// new offset to allow for a seamless offset change without double-firing or
// skipping.
nsecs_t diff = oldPhase - phase;
eventListener.mLastEventTime -= diff;
eventListener.mLastCallbackTime -= diff;
mCond.signal();
return NO_ERROR;
}
}
return BAD_VALUE;
}
private:
struct EventListener {
const char* mName;
nsecs_t mPhase;
nsecs_t mLastEventTime;
nsecs_t mLastCallbackTime;
DispSync::Callback* mCallback;
};
struct CallbackInvocation {
DispSync::Callback* mCallback;
nsecs_t mEventTime;
};
nsecs_t computeNextEventTimeLocked(nsecs_t now) {
if (mTraceDetailedInfo) ATRACE_CALL();
ALOGV("[%s] computeNextEventTimeLocked", mName);
nsecs_t nextEventTime = INT64_MAX;
for (size_t i = 0; i < mEventListeners.size(); i++) {
nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now);
if (t < nextEventTime) {
nextEventTime = t;
}
}
ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
return nextEventTime;
}
// Sanity check that the duration is close enough in length to a period without
// falling into double-rate vsyncs.
bool isCloseToPeriod(nsecs_t duration) {
// Ratio of 3/5 is arbitrary, but it must be greater than 1/2.
return duration < (3 * mPeriod) / 5;
}
std::vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
if (mTraceDetailedInfo) ATRACE_CALL();
ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now));
std::vector<CallbackInvocation> callbackInvocations;
nsecs_t onePeriodAgo = now - mPeriod;
for (auto& eventListener : mEventListeners) {
nsecs_t t = computeListenerNextEventTimeLocked(eventListener, onePeriodAgo);
if (t < now) {
if (isCloseToPeriod(now - eventListener.mLastCallbackTime)) {
eventListener.mLastEventTime = t;
ALOGV("[%s] [%s] Skipping event due to model error", mName,
eventListener.mName);
continue;
}
CallbackInvocation ci;
ci.mCallback = eventListener.mCallback;
ci.mEventTime = t;
ALOGV("[%s] [%s] Preparing to fire, latency: %" PRId64, mName, eventListener.mName,
t - eventListener.mLastEventTime);
callbackInvocations.push_back(ci);
eventListener.mLastEventTime = t;
eventListener.mLastCallbackTime = now;
}
}
return callbackInvocations;
}
nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) {
if (mTraceDetailedInfo) ATRACE_CALL();
ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName,
ns2us(baseTime));
nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
if (baseTime < lastEventTime) {
baseTime = lastEventTime;
ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime));
}
baseTime -= mReferenceTime;
ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
nsecs_t phase = mPhase + listener.mPhase;
ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
baseTime -= phase;
ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));
// If our previous time is before the reference (because the reference
// has since been updated), the division by mPeriod will truncate
// towards zero instead of computing the floor. Since in all cases
// before the reference we want the next time to be effectively now, we
// set baseTime to -mPeriod so that numPeriods will be -1.
// When we add 1 and the phase, we will be at the correct event time for
// this period.
if (baseTime < 0) {
ALOGV("[%s] Correcting negative baseTime", mName);
baseTime = -mPeriod;
}
nsecs_t numPeriods = baseTime / mPeriod;
ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
nsecs_t t = (numPeriods + 1) * mPeriod + phase;
ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
t += mReferenceTime;
ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));
// Check that it's been slightly more than half a period since the last
// event so that we don't accidentally fall into double-rate vsyncs
if (isCloseToPeriod(t - listener.mLastEventTime)) {
t += mPeriod;
ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
}
t -= mWakeupLatency;
ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));
return t;
}
void fireCallbackInvocations(const std::vector<CallbackInvocation>& callbacks) {
if (mTraceDetailedInfo) ATRACE_CALL();
for (size_t i = 0; i < callbacks.size(); i++) {
callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
}
}
const char* const mName;
bool mStop;
bool mModelLocked;
nsecs_t mPeriod;
nsecs_t mPhase;
nsecs_t mReferenceTime;
nsecs_t mWakeupLatency;
int64_t mFrameNumber;
std::vector<EventListener> mEventListeners;
Mutex mMutex;
Condition mCond;
// Flag to turn on logging in systrace.
const bool mTraceDetailedInfo;
};
#undef LOG_TAG
#define LOG_TAG "DispSync"
class ZeroPhaseTracer : public DispSync::Callback {
public:
ZeroPhaseTracer() : mParity(false) {}
virtual void onDispSyncEvent(nsecs_t /*when*/) {
mParity = !mParity;
ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
}
private:
bool mParity;
};
DispSync::DispSync(const char* name) : mName(name), mRefreshSkipCount(0) {
// This flag offers the ability to turn on systrace logging from the shell.
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.dispsync_trace_detailed_info", value, "0");
mTraceDetailedInfo = atoi(value);
mThread = new DispSyncThread(name, mTraceDetailedInfo);
}
DispSync::~DispSync() {
mThread->stop();
mThread->requestExitAndWait();
}
void DispSync::init(bool hasSyncFramework, int64_t dispSyncPresentTimeOffset) {
mIgnorePresentFences = !hasSyncFramework;
mPresentTimeOffset = dispSyncPresentTimeOffset;
mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
// set DispSync to SCHED_FIFO to minimize jitter
struct sched_param param = {0};
param.sched_priority = 2;
if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, ¶m) != 0) {
ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
}
beginResync();
if (mTraceDetailedInfo && kEnableZeroPhaseTracer) {
mZeroPhaseTracer = std::make_unique<ZeroPhaseTracer>();
addEventListener("ZeroPhaseTracer", 0, mZeroPhaseTracer.get(), 0);
}
}
void DispSync::reset() {
Mutex::Autolock lock(mMutex);
resetLocked();
}
void DispSync::resetLocked() {
mPhase = 0;
const size_t lastSampleIdx = (mFirstResyncSample + mNumResyncSamples - 1) % MAX_RESYNC_SAMPLES;
// Keep the most recent sample, when we resync to hardware we'll overwrite this
// with a more accurate signal
if (mResyncSamples[lastSampleIdx] != 0) {
mReferenceTime = mResyncSamples[lastSampleIdx];
}
mModelUpdated = false;
for (size_t i = 0; i < MAX_RESYNC_SAMPLES; i++) {
mResyncSamples[i] = 0;
}
mNumResyncSamples = 0;
mFirstResyncSample = 0;
mNumResyncSamplesSincePresent = 0;
mThread->unlockModel();
resetErrorLocked();
}
bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
Mutex::Autolock lock(mMutex);
if (mIgnorePresentFences) {
return true;
}
mPresentFences[mPresentSampleOffset] = fenceTime;
mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
mNumResyncSamplesSincePresent = 0;
updateErrorLocked();
return !mModelUpdated || mError > kErrorThreshold;
}
void DispSync::beginResync() {
Mutex::Autolock lock(mMutex);
ALOGV("[%s] beginResync", mName);
resetLocked();
}
bool DispSync::addResyncSample(nsecs_t timestamp, bool* periodFlushed) {
Mutex::Autolock lock(mMutex);
ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));
*periodFlushed = false;
const size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
mResyncSamples[idx] = timestamp;
if (mNumResyncSamples == 0) {
mPhase = 0;
ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
"mReferenceTime = %" PRId64,
mName, ns2us(mPeriod), ns2us(timestamp));
} else if (mPendingPeriod > 0) {
// mNumResyncSamples > 0, so priorIdx won't overflow
const size_t priorIdx = (mFirstResyncSample + mNumResyncSamples - 1) % MAX_RESYNC_SAMPLES;
const nsecs_t lastTimestamp = mResyncSamples[priorIdx];
const nsecs_t observedVsync = std::abs(timestamp - lastTimestamp);
if (std::abs(observedVsync - mPendingPeriod) <= std::abs(observedVsync - mIntendedPeriod)) {
// Either the observed vsync is closer to the pending period, (and
// thus we detected a period change), or the period change will
// no-op. In either case, reset the model and flush the pending
// period.
resetLocked();
mIntendedPeriod = mPendingPeriod;
mPeriod = mPendingPeriod;
mPendingPeriod = 0;
if (mTraceDetailedInfo) {
ATRACE_INT("DispSync:PendingPeriod", mPendingPeriod);
ATRACE_INT("DispSync:IntendedPeriod", mIntendedPeriod);
}
*periodFlushed = true;
}
}
// Always update the reference time with the most recent timestamp.
mReferenceTime = timestamp;
mThread->updateModel(mPeriod, mPhase, mReferenceTime);
if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
mNumResyncSamples++;
} else {
mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
}
updateModelLocked();
if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
resetErrorLocked();
}
if (mIgnorePresentFences) {
// If we're ignoring the present fences we have no way to know whether
// or not we're synchronized with the HW vsyncs, so we just request
// that the HW vsync events be turned on.
return true;
}
// Check against kErrorThreshold / 2 to add some hysteresis before having to
// resync again
bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2) && mPendingPeriod == 0;
ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked");
if (modelLocked) {
*periodFlushed = true;
mThread->lockModel();
}
return !modelLocked;
}
void DispSync::endResync() {
mThread->lockModel();
}
status_t DispSync::addEventListener(const char* name, nsecs_t phase, Callback* callback,
nsecs_t lastCallbackTime) {
Mutex::Autolock lock(mMutex);
return mThread->addEventListener(name, phase, callback, lastCallbackTime);
}
void DispSync::setRefreshSkipCount(int count) {
Mutex::Autolock lock(mMutex);
ALOGD("setRefreshSkipCount(%d)", count);
mRefreshSkipCount = count;
updateModelLocked();
}
status_t DispSync::removeEventListener(Callback* callback, nsecs_t* outLastCallbackTime) {
Mutex::Autolock lock(mMutex);
return mThread->removeEventListener(callback, outLastCallbackTime);
}
status_t DispSync::changePhaseOffset(Callback* callback, nsecs_t phase) {
Mutex::Autolock lock(mMutex);
return mThread->changePhaseOffset(callback, phase);
}
void DispSync::setPeriod(nsecs_t period) {
Mutex::Autolock lock(mMutex);
const bool pendingPeriodShouldChange =
period != mIntendedPeriod || (period == mIntendedPeriod && mPendingPeriod != 0);
if (pendingPeriodShouldChange) {
mPendingPeriod = period;
}
if (mTraceDetailedInfo) {
ATRACE_INT("DispSync:IntendedPeriod", mIntendedPeriod);
ATRACE_INT("DispSync:PendingPeriod", mPendingPeriod);
}
}
nsecs_t DispSync::getPeriod() {
// lock mutex as mPeriod changes multiple times in updateModelLocked
Mutex::Autolock lock(mMutex);
return mPeriod;
}
void DispSync::updateModelLocked() {
ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
ALOGV("[%s] Computing...", mName);
nsecs_t durationSum = 0;
nsecs_t minDuration = INT64_MAX;
nsecs_t maxDuration = 0;
// We skip the first 2 samples because the first vsync duration on some
// devices may be much more inaccurate than on other devices, e.g. due
// to delays in ramping up from a power collapse. By doing so this
// actually increases the accuracy of the DispSync model even though
// we're effectively relying on fewer sample points.
static constexpr size_t numSamplesSkipped = 2;
for (size_t i = numSamplesSkipped; i < mNumResyncSamples; i++) {
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
durationSum += duration;
minDuration = min(minDuration, duration);
maxDuration = max(maxDuration, duration);
}
// Exclude the min and max from the average
durationSum -= minDuration + maxDuration;
mPeriod = durationSum / (mNumResyncSamples - numSamplesSkipped - 2);
ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));
double sampleAvgX = 0;
double sampleAvgY = 0;
double scale = 2.0 * M_PI / double(mPeriod);
for (size_t i = numSamplesSkipped; i < mNumResyncSamples; i++) {
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
double samplePhase = double(sample % mPeriod) * scale;
sampleAvgX += cos(samplePhase);
sampleAvgY += sin(samplePhase);
}
sampleAvgX /= double(mNumResyncSamples - numSamplesSkipped);
sampleAvgY /= double(mNumResyncSamples - numSamplesSkipped);
mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));
if (mPhase < -(mPeriod / 2)) {
mPhase += mPeriod;
ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
}
// Artificially inflate the period if requested.
mPeriod += mPeriod * mRefreshSkipCount;
mThread->updateModel(mPeriod, mPhase, mReferenceTime);
mModelUpdated = true;
}
}
void DispSync::updateErrorLocked() {
if (!mModelUpdated) {
return;
}
// Need to compare present fences against the un-adjusted refresh period,
// since they might arrive between two events.
nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
int numErrSamples = 0;
nsecs_t sqErrSum = 0;
for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
// Only check for the cached value of signal time to avoid unecessary
// syscalls. It is the responsibility of the DispSync owner to
// call getSignalTime() periodically so the cache is updated when the
// fence signals.
nsecs_t time = mPresentFences[i]->getCachedSignalTime();
if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) {
continue;
}
nsecs_t sample = time - mReferenceTime;
if (sample <= mPhase) {
continue;
}
nsecs_t sampleErr = (sample - mPhase) % period;
if (sampleErr > period / 2) {
sampleErr -= period;
}
sqErrSum += sampleErr * sampleErr;
numErrSamples++;
}
if (numErrSamples > 0) {
mError = sqErrSum / numErrSamples;
mZeroErrSamplesCount = 0;
} else {
mError = 0;
// Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam.
mZeroErrSamplesCount++;
ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0,
"No present times for model error.");
}
if (mTraceDetailedInfo) {
ATRACE_INT64("DispSync:Error", mError);
}
}
void DispSync::resetErrorLocked() {
mPresentSampleOffset = 0;
mError = 0;
mZeroErrSamplesCount = 0;
if (mTraceDetailedInfo) {
ATRACE_INT64("DispSync:Error", mError);
}
for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
mPresentFences[i] = FenceTime::NO_FENCE;
}
}
nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
Mutex::Autolock lock(mMutex);
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
nsecs_t phase = mReferenceTime + mPhase;
if (mPeriod == 0) {
return 0;
}
return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
}
void DispSync::setIgnorePresentFences(bool ignore) {
Mutex::Autolock lock(mMutex);
if (mIgnorePresentFences != ignore) {
mIgnorePresentFences = ignore;
resetLocked();
}
}
void DispSync::dump(std::string& result) const {
Mutex::Autolock lock(mMutex);
StringAppendF(&result, "present fences are %s\n", mIgnorePresentFences ? "ignored" : "used");
StringAppendF(&result, "mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n", mPeriod,
1000000000.0 / mPeriod, mRefreshSkipCount);
StringAppendF(&result, "mPhase: %" PRId64 " ns\n", mPhase);
StringAppendF(&result, "mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError));
StringAppendF(&result, "mNumResyncSamplesSincePresent: %d (limit %d)\n",
mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
StringAppendF(&result, "mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples,
MAX_RESYNC_SAMPLES);
result.append("mResyncSamples:\n");
nsecs_t previous = -1;
for (size_t i = 0; i < mNumResyncSamples; i++) {
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
nsecs_t sampleTime = mResyncSamples[idx];
if (i == 0) {
StringAppendF(&result, " %" PRId64 "\n", sampleTime);
} else {
StringAppendF(&result, " %" PRId64 " (+%" PRId64 ")\n", sampleTime,
sampleTime - previous);
}
previous = sampleTime;
}
StringAppendF(&result, "mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES);
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
previous = Fence::SIGNAL_TIME_INVALID;
for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
nsecs_t presentTime = mPresentFences[idx]->getSignalTime();
if (presentTime == Fence::SIGNAL_TIME_PENDING) {
StringAppendF(&result, " [unsignaled fence]\n");
} else if (presentTime == Fence::SIGNAL_TIME_INVALID) {
StringAppendF(&result, " [invalid fence]\n");
} else if (previous == Fence::SIGNAL_TIME_PENDING ||
previous == Fence::SIGNAL_TIME_INVALID) {
StringAppendF(&result, " %" PRId64 " (%.3f ms ago)\n", presentTime,
(now - presentTime) / 1000000.0);
} else {
StringAppendF(&result, " %" PRId64 " (+%" PRId64 " / %.3f) (%.3f ms ago)\n",
presentTime, presentTime - previous,
(presentTime - previous) / (double)mPeriod,
(now - presentTime) / 1000000.0);
}
previous = presentTime;
}
StringAppendF(&result, "current monotonic time: %" PRId64 "\n", now);
}
nsecs_t DispSync::expectedPresentTime() {
// The HWC doesn't currently have a way to report additional latency.
// Assume that whatever we submit now will appear right after the flip.
// For a smart panel this might be 1. This is expressed in frames,
// rather than time, because we expect to have a constant frame delay
// regardless of the refresh rate.
const uint32_t hwcLatency = 0;
// Ask DispSync when the next refresh will be (CLOCK_MONOTONIC).
return computeNextRefresh(hwcLatency);
}
} // namespace impl
} // namespace android
|