1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "VelocityTracker"
//#define LOG_NDEBUG 0
// Log debug messages about velocity tracking.
#define DEBUG_VELOCITY 0
// Log debug messages about the progress of the algorithm itself.
#define DEBUG_STRATEGY 0
#include <math.h>
#include <limits.h>
#include <cutils/properties.h>
#include <input/VelocityTracker.h>
#include <utils/BitSet.h>
#include <utils/String8.h>
#include <utils/Timers.h>
namespace android {
// Nanoseconds per milliseconds.
static const nsecs_t NANOS_PER_MS = 1000000;
// Threshold for determining that a pointer has stopped moving.
// Some input devices do not send ACTION_MOVE events in the case where a pointer has
// stopped. We need to detect this case so that we can accurately predict the
// velocity after the pointer starts moving again.
static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
static float vectorDot(const float* a, const float* b, uint32_t m) {
float r = 0;
while (m) {
m--;
r += *(a++) * *(b++);
}
return r;
}
static float vectorNorm(const float* a, uint32_t m) {
float r = 0;
while (m) {
m--;
float t = *(a++);
r += t * t;
}
return sqrtf(r);
}
#if DEBUG_STRATEGY || DEBUG_VELOCITY
static String8 vectorToString(const float* a, uint32_t m) {
String8 str;
str.append("[");
while (m--) {
str.appendFormat(" %f", *(a++));
if (m) {
str.append(",");
}
}
str.append(" ]");
return str;
}
static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
String8 str;
str.append("[");
for (size_t i = 0; i < m; i++) {
if (i) {
str.append(",");
}
str.append(" [");
for (size_t j = 0; j < n; j++) {
if (j) {
str.append(",");
}
str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
}
str.append(" ]");
}
str.append(" ]");
return str;
}
#endif
// --- VelocityTracker ---
// The default velocity tracker strategy.
// Although other strategies are available for testing and comparison purposes,
// this is the strategy that applications will actually use. Be very careful
// when adjusting the default strategy because it can dramatically affect
// (often in a bad way) the user experience.
const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
VelocityTracker::VelocityTracker(const char* strategy) :
mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
char value[PROPERTY_VALUE_MAX];
// Allow the default strategy to be overridden using a system property for debugging.
if (!strategy) {
int length = property_get("debug.velocitytracker.strategy", value, NULL);
if (length > 0) {
strategy = value;
} else {
strategy = DEFAULT_STRATEGY;
}
}
// Configure the strategy.
if (!configureStrategy(strategy)) {
ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
if (!configureStrategy(DEFAULT_STRATEGY)) {
LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
strategy);
}
}
}
VelocityTracker::~VelocityTracker() {
delete mStrategy;
}
bool VelocityTracker::configureStrategy(const char* strategy) {
mStrategy = createStrategy(strategy);
return mStrategy != NULL;
}
VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
if (!strcmp("lsq1", strategy)) {
// 1st order least squares. Quality: POOR.
// Frequently underfits the touch data especially when the finger accelerates
// or changes direction. Often underestimates velocity. The direction
// is overly influenced by historical touch points.
return new LeastSquaresVelocityTrackerStrategy(1);
}
if (!strcmp("lsq2", strategy)) {
// 2nd order least squares. Quality: VERY GOOD.
// Pretty much ideal, but can be confused by certain kinds of touch data,
// particularly if the panel has a tendency to generate delayed,
// duplicate or jittery touch coordinates when the finger is released.
return new LeastSquaresVelocityTrackerStrategy(2);
}
if (!strcmp("lsq3", strategy)) {
// 3rd order least squares. Quality: UNUSABLE.
// Frequently overfits the touch data yielding wildly divergent estimates
// of the velocity when the finger is released.
return new LeastSquaresVelocityTrackerStrategy(3);
}
if (!strcmp("wlsq2-delta", strategy)) {
// 2nd order weighted least squares, delta weighting. Quality: EXPERIMENTAL
return new LeastSquaresVelocityTrackerStrategy(2,
LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
}
if (!strcmp("wlsq2-central", strategy)) {
// 2nd order weighted least squares, central weighting. Quality: EXPERIMENTAL
return new LeastSquaresVelocityTrackerStrategy(2,
LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
}
if (!strcmp("wlsq2-recent", strategy)) {
// 2nd order weighted least squares, recent weighting. Quality: EXPERIMENTAL
return new LeastSquaresVelocityTrackerStrategy(2,
LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
}
if (!strcmp("int1", strategy)) {
// 1st order integrating filter. Quality: GOOD.
// Not as good as 'lsq2' because it cannot estimate acceleration but it is
// more tolerant of errors. Like 'lsq1', this strategy tends to underestimate
// the velocity of a fling but this strategy tends to respond to changes in
// direction more quickly and accurately.
return new IntegratingVelocityTrackerStrategy(1);
}
if (!strcmp("int2", strategy)) {
// 2nd order integrating filter. Quality: EXPERIMENTAL.
// For comparison purposes only. Unlike 'int1' this strategy can compensate
// for acceleration but it typically overestimates the effect.
return new IntegratingVelocityTrackerStrategy(2);
}
if (!strcmp("legacy", strategy)) {
// Legacy velocity tracker algorithm. Quality: POOR.
// For comparison purposes only. This algorithm is strongly influenced by
// old data points, consistently underestimates velocity and takes a very long
// time to adjust to changes in direction.
return new LegacyVelocityTrackerStrategy();
}
return NULL;
}
void VelocityTracker::clear() {
mCurrentPointerIdBits.clear();
mActivePointerId = -1;
mStrategy->clear();
}
void VelocityTracker::clearPointers(BitSet32 idBits) {
BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
mCurrentPointerIdBits = remainingIdBits;
if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
}
mStrategy->clearPointers(idBits);
}
void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
while (idBits.count() > MAX_POINTERS) {
idBits.clearLastMarkedBit();
}
if ((mCurrentPointerIdBits.value & idBits.value)
&& eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
#if DEBUG_VELOCITY
ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
(eventTime - mLastEventTime) * 0.000001f);
#endif
// We have not received any movements for too long. Assume that all pointers
// have stopped.
mStrategy->clear();
}
mLastEventTime = eventTime;
mCurrentPointerIdBits = idBits;
if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
}
mStrategy->addMovement(eventTime, idBits, positions);
#if DEBUG_VELOCITY
ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
eventTime, idBits.value, mActivePointerId);
for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
uint32_t id = iterBits.firstMarkedBit();
uint32_t index = idBits.getIndexOfBit(id);
iterBits.clearBit(id);
Estimator estimator;
getEstimator(id, &estimator);
ALOGD(" %d: position (%0.3f, %0.3f), "
"estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
id, positions[index].x, positions[index].y,
int(estimator.degree),
vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
estimator.confidence);
}
#endif
}
void VelocityTracker::addMovement(const MotionEvent* event) {
int32_t actionMasked = event->getActionMasked();
switch (actionMasked) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
// Clear all pointers on down before adding the new movement.
clear();
break;
case AMOTION_EVENT_ACTION_POINTER_DOWN: {
// Start a new movement trace for a pointer that just went down.
// We do this on down instead of on up because the client may want to query the
// final velocity for a pointer that just went up.
BitSet32 downIdBits;
downIdBits.markBit(event->getPointerId(event->getActionIndex()));
clearPointers(downIdBits);
break;
}
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
break;
default:
// Ignore all other actions because they do not convey any new information about
// pointer movement. We also want to preserve the last known velocity of the pointers.
// Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
// of the pointers that went up. ACTION_POINTER_UP does include the new position of
// pointers that remained down but we will also receive an ACTION_MOVE with this
// information if any of them actually moved. Since we don't know how many pointers
// will be going up at once it makes sense to just wait for the following ACTION_MOVE
// before adding the movement.
return;
}
size_t pointerCount = event->getPointerCount();
if (pointerCount > MAX_POINTERS) {
pointerCount = MAX_POINTERS;
}
BitSet32 idBits;
for (size_t i = 0; i < pointerCount; i++) {
idBits.markBit(event->getPointerId(i));
}
uint32_t pointerIndex[MAX_POINTERS];
for (size_t i = 0; i < pointerCount; i++) {
pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
}
nsecs_t eventTime;
Position positions[pointerCount];
size_t historySize = event->getHistorySize();
for (size_t h = 0; h < historySize; h++) {
eventTime = event->getHistoricalEventTime(h);
for (size_t i = 0; i < pointerCount; i++) {
uint32_t index = pointerIndex[i];
positions[index].x = event->getHistoricalX(i, h);
positions[index].y = event->getHistoricalY(i, h);
}
addMovement(eventTime, idBits, positions);
}
eventTime = event->getEventTime();
for (size_t i = 0; i < pointerCount; i++) {
uint32_t index = pointerIndex[i];
positions[index].x = event->getX(i);
positions[index].y = event->getY(i);
}
addMovement(eventTime, idBits, positions);
}
bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
Estimator estimator;
if (getEstimator(id, &estimator) && estimator.degree >= 1) {
*outVx = estimator.xCoeff[1];
*outVy = estimator.yCoeff[1];
return true;
}
*outVx = 0;
*outVy = 0;
return false;
}
bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
return mStrategy->getEstimator(id, outEstimator);
}
// --- LeastSquaresVelocityTrackerStrategy ---
const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
uint32_t degree, Weighting weighting) :
mDegree(degree), mWeighting(weighting) {
clear();
}
LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
}
void LeastSquaresVelocityTrackerStrategy::clear() {
mIndex = 0;
mMovements[0].idBits.clear();
}
void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
mMovements[mIndex].idBits = remainingIdBits;
}
void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
const VelocityTracker::Position* positions) {
if (++mIndex == HISTORY_SIZE) {
mIndex = 0;
}
Movement& movement = mMovements[mIndex];
movement.eventTime = eventTime;
movement.idBits = idBits;
uint32_t count = idBits.count();
for (uint32_t i = 0; i < count; i++) {
movement.positions[i] = positions[i];
}
}
/**
* Solves a linear least squares problem to obtain a N degree polynomial that fits
* the specified input data as nearly as possible.
*
* Returns true if a solution is found, false otherwise.
*
* The input consists of two vectors of data points X and Y with indices 0..m-1
* along with a weight vector W of the same size.
*
* The output is a vector B with indices 0..n that describes a polynomial
* that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
* + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
*
* Accordingly, the weight vector W should be initialized by the caller with the
* reciprocal square root of the variance of the error in each input data point.
* In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
* The weights express the relative importance of each data point. If the weights are
* all 1, then the data points are considered to be of equal importance when fitting
* the polynomial. It is a good idea to choose weights that diminish the importance
* of data points that may have higher than usual error margins.
*
* Errors among data points are assumed to be independent. W is represented here
* as a vector although in the literature it is typically taken to be a diagonal matrix.
*
* That is to say, the function that generated the input data can be approximated
* by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
*
* The coefficient of determination (R^2) is also returned to describe the goodness
* of fit of the model for the given data. It is a value between 0 and 1, where 1
* indicates perfect correspondence.
*
* This function first expands the X vector to a m by n matrix A such that
* A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
* multiplies it by w[i]./
*
* Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
* and an m by n upper triangular matrix R. Because R is upper triangular (lower
* part is all zeroes), we can simplify the decomposition into an m by n matrix
* Q1 and a n by n matrix R1 such that A = Q1 R1.
*
* Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
* to find B.
*
* For efficiency, we lay out A and Q column-wise in memory because we frequently
* operate on the column vectors. Conversely, we lay out R row-wise.
*
* http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
* http://en.wikipedia.org/wiki/Gram-Schmidt
*/
static bool solveLeastSquares(const float* x, const float* y,
const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
#if DEBUG_STRATEGY
ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
vectorToString(x, m).string(), vectorToString(y, m).string(),
vectorToString(w, m).string());
#endif
// Expand the X vector to a matrix A, pre-multiplied by the weights.
float a[n][m]; // column-major order
for (uint32_t h = 0; h < m; h++) {
a[0][h] = w[h];
for (uint32_t i = 1; i < n; i++) {
a[i][h] = a[i - 1][h] * x[h];
}
}
#if DEBUG_STRATEGY
ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
#endif
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
float q[n][m]; // orthonormal basis, column-major order
float r[n][n]; // upper triangular matrix, row-major order
for (uint32_t j = 0; j < n; j++) {
for (uint32_t h = 0; h < m; h++) {
q[j][h] = a[j][h];
}
for (uint32_t i = 0; i < j; i++) {
float dot = vectorDot(&q[j][0], &q[i][0], m);
for (uint32_t h = 0; h < m; h++) {
q[j][h] -= dot * q[i][h];
}
}
float norm = vectorNorm(&q[j][0], m);
if (norm < 0.000001f) {
// vectors are linearly dependent or zero so no solution
#if DEBUG_STRATEGY
ALOGD(" - no solution, norm=%f", norm);
#endif
return false;
}
float invNorm = 1.0f / norm;
for (uint32_t h = 0; h < m; h++) {
q[j][h] *= invNorm;
}
for (uint32_t i = 0; i < n; i++) {
r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
}
}
#if DEBUG_STRATEGY
ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
// calculate QR, if we factored A correctly then QR should equal A
float qr[n][m];
for (uint32_t h = 0; h < m; h++) {
for (uint32_t i = 0; i < n; i++) {
qr[i][h] = 0;
for (uint32_t j = 0; j < n; j++) {
qr[i][h] += q[j][h] * r[j][i];
}
}
}
ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
#endif
// Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
// We just work from bottom-right to top-left calculating B's coefficients.
float wy[m];
for (uint32_t h = 0; h < m; h++) {
wy[h] = y[h] * w[h];
}
for (uint32_t i = n; i != 0; ) {
i--;
outB[i] = vectorDot(&q[i][0], wy, m);
for (uint32_t j = n - 1; j > i; j--) {
outB[i] -= r[i][j] * outB[j];
}
outB[i] /= r[i][i];
}
#if DEBUG_STRATEGY
ALOGD(" - b=%s", vectorToString(outB, n).string());
#endif
// Calculate the coefficient of determination as 1 - (SSerr / SStot) where
// SSerr is the residual sum of squares (variance of the error),
// and SStot is the total sum of squares (variance of the data) where each
// has been weighted.
float ymean = 0;
for (uint32_t h = 0; h < m; h++) {
ymean += y[h];
}
ymean /= m;
float sserr = 0;
float sstot = 0;
for (uint32_t h = 0; h < m; h++) {
float err = y[h] - outB[0];
float term = 1;
for (uint32_t i = 1; i < n; i++) {
term *= x[h];
err -= term * outB[i];
}
sserr += w[h] * w[h] * err * err;
float var = y[h] - ymean;
sstot += w[h] * w[h] * var * var;
}
*outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
#if DEBUG_STRATEGY
ALOGD(" - sserr=%f", sserr);
ALOGD(" - sstot=%f", sstot);
ALOGD(" - det=%f", *outDet);
#endif
return true;
}
bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
VelocityTracker::Estimator* outEstimator) const {
outEstimator->clear();
// Iterate over movement samples in reverse time order and collect samples.
float x[HISTORY_SIZE];
float y[HISTORY_SIZE];
float w[HISTORY_SIZE];
float time[HISTORY_SIZE];
uint32_t m = 0;
uint32_t index = mIndex;
const Movement& newestMovement = mMovements[mIndex];
do {
const Movement& movement = mMovements[index];
if (!movement.idBits.hasBit(id)) {
break;
}
nsecs_t age = newestMovement.eventTime - movement.eventTime;
if (age > HORIZON) {
break;
}
const VelocityTracker::Position& position = movement.getPosition(id);
x[m] = position.x;
y[m] = position.y;
w[m] = chooseWeight(index);
time[m] = -age * 0.000000001f;
index = (index == 0 ? HISTORY_SIZE : index) - 1;
} while (++m < HISTORY_SIZE);
if (m == 0) {
return false; // no data
}
// Calculate a least squares polynomial fit.
uint32_t degree = mDegree;
if (degree > m - 1) {
degree = m - 1;
}
if (degree >= 1) {
float xdet, ydet;
uint32_t n = degree + 1;
if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
&& solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
outEstimator->time = newestMovement.eventTime;
outEstimator->degree = degree;
outEstimator->confidence = xdet * ydet;
#if DEBUG_STRATEGY
ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
int(outEstimator->degree),
vectorToString(outEstimator->xCoeff, n).string(),
vectorToString(outEstimator->yCoeff, n).string(),
outEstimator->confidence);
#endif
return true;
}
}
// No velocity data available for this pointer, but we do have its current position.
outEstimator->xCoeff[0] = x[0];
outEstimator->yCoeff[0] = y[0];
outEstimator->time = newestMovement.eventTime;
outEstimator->degree = 0;
outEstimator->confidence = 1;
return true;
}
float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
switch (mWeighting) {
case WEIGHTING_DELTA: {
// Weight points based on how much time elapsed between them and the next
// point so that points that "cover" a shorter time span are weighed less.
// delta 0ms: 0.5
// delta 10ms: 1.0
if (index == mIndex) {
return 1.0f;
}
uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
* 0.000001f;
if (deltaMillis < 0) {
return 0.5f;
}
if (deltaMillis < 10) {
return 0.5f + deltaMillis * 0.05;
}
return 1.0f;
}
case WEIGHTING_CENTRAL: {
// Weight points based on their age, weighing very recent and very old points less.
// age 0ms: 0.5
// age 10ms: 1.0
// age 50ms: 1.0
// age 60ms: 0.5
float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
* 0.000001f;
if (ageMillis < 0) {
return 0.5f;
}
if (ageMillis < 10) {
return 0.5f + ageMillis * 0.05;
}
if (ageMillis < 50) {
return 1.0f;
}
if (ageMillis < 60) {
return 0.5f + (60 - ageMillis) * 0.05;
}
return 0.5f;
}
case WEIGHTING_RECENT: {
// Weight points based on their age, weighing older points less.
// age 0ms: 1.0
// age 50ms: 1.0
// age 100ms: 0.5
float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
* 0.000001f;
if (ageMillis < 50) {
return 1.0f;
}
if (ageMillis < 100) {
return 0.5f + (100 - ageMillis) * 0.01f;
}
return 0.5f;
}
case WEIGHTING_NONE:
default:
return 1.0f;
}
}
// --- IntegratingVelocityTrackerStrategy ---
IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
mDegree(degree) {
}
IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
}
void IntegratingVelocityTrackerStrategy::clear() {
mPointerIdBits.clear();
}
void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
mPointerIdBits.value &= ~idBits.value;
}
void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
const VelocityTracker::Position* positions) {
uint32_t index = 0;
for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
uint32_t id = iterIdBits.clearFirstMarkedBit();
State& state = mPointerState[id];
const VelocityTracker::Position& position = positions[index++];
if (mPointerIdBits.hasBit(id)) {
updateState(state, eventTime, position.x, position.y);
} else {
initState(state, eventTime, position.x, position.y);
}
}
mPointerIdBits = idBits;
}
bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
VelocityTracker::Estimator* outEstimator) const {
outEstimator->clear();
if (mPointerIdBits.hasBit(id)) {
const State& state = mPointerState[id];
populateEstimator(state, outEstimator);
return true;
}
return false;
}
void IntegratingVelocityTrackerStrategy::initState(State& state,
nsecs_t eventTime, float xpos, float ypos) const {
state.updateTime = eventTime;
state.degree = 0;
state.xpos = xpos;
state.xvel = 0;
state.xaccel = 0;
state.ypos = ypos;
state.yvel = 0;
state.yaccel = 0;
}
void IntegratingVelocityTrackerStrategy::updateState(State& state,
nsecs_t eventTime, float xpos, float ypos) const {
const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
return;
}
float dt = (eventTime - state.updateTime) * 0.000000001f;
state.updateTime = eventTime;
float xvel = (xpos - state.xpos) / dt;
float yvel = (ypos - state.ypos) / dt;
if (state.degree == 0) {
state.xvel = xvel;
state.yvel = yvel;
state.degree = 1;
} else {
float alpha = dt / (FILTER_TIME_CONSTANT + dt);
if (mDegree == 1) {
state.xvel += (xvel - state.xvel) * alpha;
state.yvel += (yvel - state.yvel) * alpha;
} else {
float xaccel = (xvel - state.xvel) / dt;
float yaccel = (yvel - state.yvel) / dt;
if (state.degree == 1) {
state.xaccel = xaccel;
state.yaccel = yaccel;
state.degree = 2;
} else {
state.xaccel += (xaccel - state.xaccel) * alpha;
state.yaccel += (yaccel - state.yaccel) * alpha;
}
state.xvel += (state.xaccel * dt) * alpha;
state.yvel += (state.yaccel * dt) * alpha;
}
}
state.xpos = xpos;
state.ypos = ypos;
}
void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
VelocityTracker::Estimator* outEstimator) const {
outEstimator->time = state.updateTime;
outEstimator->confidence = 1.0f;
outEstimator->degree = state.degree;
outEstimator->xCoeff[0] = state.xpos;
outEstimator->xCoeff[1] = state.xvel;
outEstimator->xCoeff[2] = state.xaccel / 2;
outEstimator->yCoeff[0] = state.ypos;
outEstimator->yCoeff[1] = state.yvel;
outEstimator->yCoeff[2] = state.yaccel / 2;
}
// --- LegacyVelocityTrackerStrategy ---
const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
clear();
}
LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
}
void LegacyVelocityTrackerStrategy::clear() {
mIndex = 0;
mMovements[0].idBits.clear();
}
void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
mMovements[mIndex].idBits = remainingIdBits;
}
void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
const VelocityTracker::Position* positions) {
if (++mIndex == HISTORY_SIZE) {
mIndex = 0;
}
Movement& movement = mMovements[mIndex];
movement.eventTime = eventTime;
movement.idBits = idBits;
uint32_t count = idBits.count();
for (uint32_t i = 0; i < count; i++) {
movement.positions[i] = positions[i];
}
}
bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
VelocityTracker::Estimator* outEstimator) const {
outEstimator->clear();
const Movement& newestMovement = mMovements[mIndex];
if (!newestMovement.idBits.hasBit(id)) {
return false; // no data
}
// Find the oldest sample that contains the pointer and that is not older than HORIZON.
nsecs_t minTime = newestMovement.eventTime - HORIZON;
uint32_t oldestIndex = mIndex;
uint32_t numTouches = 1;
do {
uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
const Movement& nextOldestMovement = mMovements[nextOldestIndex];
if (!nextOldestMovement.idBits.hasBit(id)
|| nextOldestMovement.eventTime < minTime) {
break;
}
oldestIndex = nextOldestIndex;
} while (++numTouches < HISTORY_SIZE);
// Calculate an exponentially weighted moving average of the velocity estimate
// at different points in time measured relative to the oldest sample.
// This is essentially an IIR filter. Newer samples are weighted more heavily
// than older samples. Samples at equal time points are weighted more or less
// equally.
//
// One tricky problem is that the sample data may be poorly conditioned.
// Sometimes samples arrive very close together in time which can cause us to
// overestimate the velocity at that time point. Most samples might be measured
// 16ms apart but some consecutive samples could be only 0.5sm apart because
// the hardware or driver reports them irregularly or in bursts.
float accumVx = 0;
float accumVy = 0;
uint32_t index = oldestIndex;
uint32_t samplesUsed = 0;
const Movement& oldestMovement = mMovements[oldestIndex];
const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
nsecs_t lastDuration = 0;
while (numTouches-- > 1) {
if (++index == HISTORY_SIZE) {
index = 0;
}
const Movement& movement = mMovements[index];
nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
// If the duration between samples is small, we may significantly overestimate
// the velocity. Consequently, we impose a minimum duration constraint on the
// samples that we include in the calculation.
if (duration >= MIN_DURATION) {
const VelocityTracker::Position& position = movement.getPosition(id);
float scale = 1000000000.0f / duration; // one over time delta in seconds
float vx = (position.x - oldestPosition.x) * scale;
float vy = (position.y - oldestPosition.y) * scale;
accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
lastDuration = duration;
samplesUsed += 1;
}
}
// Report velocity.
const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
outEstimator->time = newestMovement.eventTime;
outEstimator->confidence = 1;
outEstimator->xCoeff[0] = newestPosition.x;
outEstimator->yCoeff[0] = newestPosition.y;
if (samplesUsed) {
outEstimator->xCoeff[1] = accumVx;
outEstimator->yCoeff[1] = accumVy;
outEstimator->degree = 1;
} else {
outEstimator->degree = 0;
}
return true;
}
} // namespace android
|