1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
|
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <binder/AppOpsManager.h>
#include <binder/BinderService.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <cutils/ashmem.h>
#include <cutils/properties.h>
#include <hardware/sensors.h>
#include <hardware_legacy/power.h>
#include <openssl/digest.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <sensor/SensorEventQueue.h>
#include <utils/SystemClock.h>
#include "BatteryService.h"
#include "CorrectedGyroSensor.h"
#include "GravitySensor.h"
#include "LinearAccelerationSensor.h"
#include "OrientationSensor.h"
#include "RotationVectorSensor.h"
#include "SensorFusion.h"
#include "SensorInterface.h"
#include "SensorService.h"
#include "SensorDirectConnection.h"
#include "SensorEventAckReceiver.h"
#include "SensorEventConnection.h"
#include "SensorRecord.h"
#include "SensorRegistrationInfo.h"
#include <inttypes.h>
#include <math.h>
#include <sched.h>
#include <stdint.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
namespace android {
// ---------------------------------------------------------------------------
/*
* Notes:
*
* - what about a gyro-corrected magnetic-field sensor?
* - run mag sensor from time to time to force calibration
* - gravity sensor length is wrong (=> drift in linear-acc sensor)
*
*/
const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
uint8_t SensorService::sHmacGlobalKey[128] = {};
bool SensorService::sHmacGlobalKeyIsValid = false;
#define SENSOR_SERVICE_DIR "/data/system/sensor_service"
#define SENSOR_SERVICE_HMAC_KEY_FILE SENSOR_SERVICE_DIR "/hmac_key"
#define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
// Permissions.
static const String16 sDumpPermission("android.permission.DUMP");
static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
SensorService::SensorService()
: mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
mWakeLockAcquired(false) {
}
bool SensorService::initializeHmacKey() {
int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
if (fd != -1) {
int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
close(fd);
if (result == sizeof(sHmacGlobalKey)) {
return true;
}
ALOGW("Unable to read HMAC key; generating new one.");
}
if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
return false;
}
// We need to make sure this is only readable to us.
bool wroteKey = false;
mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
S_IRUSR|S_IWUSR);
if (fd != -1) {
int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
close(fd);
wroteKey = (result == sizeof(sHmacGlobalKey));
}
if (wroteKey) {
ALOGI("Generated new HMAC key.");
} else {
ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
"after reboot.");
}
// Even if we failed to write the key we return true, because we did
// initialize the HMAC key.
return true;
}
// Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
void SensorService::enableSchedFifoMode() {
struct sched_param param = {0};
param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m) != 0) {
ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
}
}
void SensorService::onFirstRef() {
ALOGD("nuSensorService starting...");
SensorDevice& dev(SensorDevice::getInstance());
sHmacGlobalKeyIsValid = initializeHmacKey();
if (dev.initCheck() == NO_ERROR) {
sensor_t const* list;
ssize_t count = dev.getSensorList(&list);
if (count > 0) {
ssize_t orientationIndex = -1;
bool hasGyro = false, hasAccel = false, hasMag = false;
uint32_t virtualSensorsNeeds =
(1<<SENSOR_TYPE_GRAVITY) |
(1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
(1<<SENSOR_TYPE_ROTATION_VECTOR) |
(1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
(1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
for (ssize_t i=0 ; i<count ; i++) {
bool useThisSensor=true;
switch (list[i].type) {
case SENSOR_TYPE_ACCELEROMETER:
hasAccel = true;
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
hasMag = true;
break;
case SENSOR_TYPE_ORIENTATION:
orientationIndex = i;
break;
case SENSOR_TYPE_GYROSCOPE:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
hasGyro = true;
break;
case SENSOR_TYPE_GRAVITY:
case SENSOR_TYPE_LINEAR_ACCELERATION:
case SENSOR_TYPE_ROTATION_VECTOR:
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
if (IGNORE_HARDWARE_FUSION) {
useThisSensor = false;
} else {
virtualSensorsNeeds &= ~(1<<list[i].type);
}
break;
}
if (useThisSensor) {
registerSensor( new HardwareSensor(list[i]) );
}
}
// it's safe to instantiate the SensorFusion object here
// (it wants to be instantiated after h/w sensors have been
// registered)
SensorFusion::getInstance();
if (hasGyro && hasAccel && hasMag) {
// Add Android virtual sensors if they're not already
// available in the HAL
bool needRotationVector =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
registerSensor(new RotationVectorSensor(), !needRotationVector, true);
registerSensor(new OrientationSensor(), !needRotationVector, true);
bool needLinearAcceleration =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
registerSensor(new LinearAccelerationSensor(list, count),
!needLinearAcceleration, true);
// virtual debugging sensors are not for user
registerSensor( new CorrectedGyroSensor(list, count), true, true);
registerSensor( new GyroDriftSensor(), true, true);
}
if (hasAccel && hasGyro) {
bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
bool needGameRotationVector =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
}
if (hasAccel && hasMag) {
bool needGeoMagRotationVector =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
}
// Check if the device really supports batching by looking at the FIFO event
// counts for each sensor.
bool batchingSupported = false;
mSensors.forEachSensor(
[&batchingSupported] (const Sensor& s) -> bool {
if (s.getFifoMaxEventCount() > 0) {
batchingSupported = true;
}
return !batchingSupported;
});
if (batchingSupported) {
// Increase socket buffer size to a max of 100 KB for batching capabilities.
mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
} else {
mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
}
// Compare the socketBufferSize value against the system limits and limit
// it to maxSystemSocketBufferSize if necessary.
FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
char line[128];
if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
line[sizeof(line) - 1] = '\0';
size_t maxSystemSocketBufferSize;
sscanf(line, "%zu", &maxSystemSocketBufferSize);
if (mSocketBufferSize > maxSystemSocketBufferSize) {
mSocketBufferSize = maxSystemSocketBufferSize;
}
}
if (fp) {
fclose(fp);
}
mWakeLockAcquired = false;
mLooper = new Looper(false);
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
mSensorEventBuffer = new sensors_event_t[minBufferSize];
mSensorEventScratch = new sensors_event_t[minBufferSize];
mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
mCurrentOperatingMode = NORMAL;
mNextSensorRegIndex = 0;
for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
mLastNSensorRegistrations.push();
}
mInitCheck = NO_ERROR;
mAckReceiver = new SensorEventAckReceiver(this);
mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
run("SensorService", PRIORITY_URGENT_DISPLAY);
// priority can only be changed after run
enableSchedFifoMode();
}
}
}
const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
int handle = s->getSensor().getHandle();
int type = s->getSensor().getType();
if (mSensors.add(handle, s, isDebug, isVirtual)){
mRecentEvent.emplace(handle, new RecentEventLogger(type));
return s->getSensor();
} else {
return mSensors.getNonSensor();
}
}
const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
return registerSensor(s, isDebug);
}
bool SensorService::unregisterDynamicSensorLocked(int handle) {
bool ret = mSensors.remove(handle);
const auto i = mRecentEvent.find(handle);
if (i != mRecentEvent.end()) {
delete i->second;
mRecentEvent.erase(i);
}
return ret;
}
const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
return registerSensor(s, isDebug, true);
}
SensorService::~SensorService() {
for (auto && entry : mRecentEvent) {
delete entry.second;
}
}
status_t SensorService::dump(int fd, const Vector<String16>& args) {
String8 result;
if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
} else {
bool privileged = IPCThreadState::self()->getCallingUid() == 0;
if (args.size() > 2) {
return INVALID_OPERATION;
}
Mutex::Autolock _l(mLock);
SensorDevice& dev(SensorDevice::getInstance());
if (args.size() == 2 && args[0] == String16("restrict")) {
// If already in restricted mode. Ignore.
if (mCurrentOperatingMode == RESTRICTED) {
return status_t(NO_ERROR);
}
// If in any mode other than normal, ignore.
if (mCurrentOperatingMode != NORMAL) {
return INVALID_OPERATION;
}
mCurrentOperatingMode = RESTRICTED;
// temporarily stop all sensor direct report
for (auto &i : mDirectConnections) {
sp<SensorDirectConnection> connection(i.promote());
if (connection != nullptr) {
connection->stopAll(true /* backupRecord */);
}
}
dev.disableAllSensors();
// Clear all pending flush connections for all active sensors. If one of the active
// connections has called flush() and the underlying sensor has been disabled before a
// flush complete event is returned, we need to remove the connection from this queue.
for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
}
mWhiteListedPackage.setTo(String8(args[1]));
return status_t(NO_ERROR);
} else if (args.size() == 1 && args[0] == String16("enable")) {
// If currently in restricted mode, reset back to NORMAL mode else ignore.
if (mCurrentOperatingMode == RESTRICTED) {
mCurrentOperatingMode = NORMAL;
dev.enableAllSensors();
// recover all sensor direct report
for (auto &i : mDirectConnections) {
sp<SensorDirectConnection> connection(i.promote());
if (connection != nullptr) {
connection->recoverAll();
}
}
}
if (mCurrentOperatingMode == DATA_INJECTION) {
resetToNormalModeLocked();
}
mWhiteListedPackage.clear();
return status_t(NO_ERROR);
} else if (args.size() == 2 && args[0] == String16("data_injection")) {
if (mCurrentOperatingMode == NORMAL) {
dev.disableAllSensors();
status_t err = dev.setMode(DATA_INJECTION);
if (err == NO_ERROR) {
mCurrentOperatingMode = DATA_INJECTION;
} else {
// Re-enable sensors.
dev.enableAllSensors();
}
mWhiteListedPackage.setTo(String8(args[1]));
return NO_ERROR;
} else if (mCurrentOperatingMode == DATA_INJECTION) {
// Already in DATA_INJECTION mode. Treat this as a no_op.
return NO_ERROR;
} else {
// Transition to data injection mode supported only from NORMAL mode.
return INVALID_OPERATION;
}
} else if (!mSensors.hasAnySensor()) {
result.append("No Sensors on the device\n");
result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
} else {
// Default dump the sensor list and debugging information.
//
result.append("Sensor Device:\n");
result.append(SensorDevice::getInstance().dump().c_str());
result.append("Sensor List:\n");
result.append(mSensors.dump().c_str());
result.append("Fusion States:\n");
SensorFusion::getInstance().dump(result);
result.append("Recent Sensor events:\n");
for (auto&& i : mRecentEvent) {
sp<SensorInterface> s = mSensors.getInterface(i.first);
if (!i.second->isEmpty()) {
if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
i.second->setFormat("normal");
} else {
i.second->setFormat("mask_data");
}
// if there is events and sensor does not need special permission.
result.appendFormat("%s: ", s->getSensor().getName().string());
result.append(i.second->dump().c_str());
}
}
result.append("Active sensors:\n");
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
getSensorName(handle).string(),
handle,
mActiveSensors.valueAt(i)->getNumConnections());
}
result.appendFormat("Socket Buffer size = %zd events\n",
mSocketBufferSize/sizeof(sensors_event_t));
result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
"not held");
result.appendFormat("Mode :");
switch(mCurrentOperatingMode) {
case NORMAL:
result.appendFormat(" NORMAL\n");
break;
case RESTRICTED:
result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
break;
case DATA_INJECTION:
result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
}
result.appendFormat("%zd active connections\n", mActiveConnections.size());
for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
result.appendFormat("Connection Number: %zu \n", i);
connection->dump(result);
}
}
result.appendFormat("%zd direct connections\n", mDirectConnections.size());
for (size_t i = 0 ; i < mDirectConnections.size() ; i++) {
sp<SensorDirectConnection> connection(mDirectConnections[i].promote());
if (connection != nullptr) {
result.appendFormat("Direct connection %zu:\n", i);
connection->dump(result);
}
}
result.appendFormat("Previous Registrations:\n");
// Log in the reverse chronological order.
int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
const int startIndex = currentIndex;
do {
const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
if (SensorRegistrationInfo::isSentinel(reg_info)) {
// Ignore sentinel, proceed to next item.
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
continue;
}
result.appendFormat("%s\n", reg_info.dump().c_str());
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
} while(startIndex != currentIndex);
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
//TODO: move to SensorEventConnection later
void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
sensors_event_t const* buffer, const int count) {
for (int i=0 ; i<count ; i++) {
int handle = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
handle = buffer[i].meta_data.sensor;
}
if (connection->hasSensor(handle)) {
sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
// If this buffer has an event from a one_shot sensor and this connection is registered
// for this particular one_shot sensor, try cleaning up the connection.
if (si != nullptr &&
si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
si->autoDisable(connection.get(), handle);
cleanupWithoutDisableLocked(connection, handle);
}
}
}
}
bool SensorService::threadLoop() {
ALOGD("nuSensorService thread starting...");
// each virtual sensor could generate an event per "real" event, that's why we need to size
// numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. in practice, this is too
// aggressive, but guaranteed to be enough.
const size_t vcount = mSensors.getVirtualSensors().size();
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
const size_t numEventMax = minBufferSize / (1 + vcount);
SensorDevice& device(SensorDevice::getInstance());
const int halVersion = device.getHalDeviceVersion();
do {
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
if (count < 0) {
ALOGE("sensor poll failed (%s)", strerror(-count));
break;
}
// Reset sensors_event_t.flags to zero for all events in the buffer.
for (int i = 0; i < count; i++) {
mSensorEventBuffer[i].flags = 0;
}
// Make a copy of the connection vector as some connections may be removed during the course
// of this loop (especially when one-shot sensor events are present in the sensor_event
// buffer). Promote all connections to StrongPointers before the lock is acquired. If the
// destructor of the sp gets called when the lock is acquired, it may result in a deadlock
// as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
// strongPointers to a vector before the lock is acquired.
SortedVector< sp<SensorEventConnection> > activeConnections;
populateActiveConnections(&activeConnections);
Mutex::Autolock _l(mLock);
// Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
// rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
// sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
// not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
// releasing the wakelock.
bool bufferHasWakeUpEvent = false;
for (int i = 0; i < count; i++) {
if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
bufferHasWakeUpEvent = true;
break;
}
}
if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
recordLastValueLocked(mSensorEventBuffer, count);
// handle virtual sensors
if (count && vcount) {
sensors_event_t const * const event = mSensorEventBuffer;
if (!mActiveVirtualSensors.empty()) {
size_t k = 0;
SensorFusion& fusion(SensorFusion::getInstance());
if (fusion.isEnabled()) {
for (size_t i=0 ; i<size_t(count) ; i++) {
fusion.process(event[i]);
}
}
for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
for (int handle : mActiveVirtualSensors) {
if (count + k >= minBufferSize) {
ALOGE("buffer too small to hold all events: "
"count=%zd, k=%zu, size=%zu",
count, k, minBufferSize);
break;
}
sensors_event_t out;
sp<SensorInterface> si = mSensors.getInterface(handle);
if (si == nullptr) {
ALOGE("handle %d is not an valid virtual sensor", handle);
continue;
}
if (si->process(&out, event[i])) {
mSensorEventBuffer[count + k] = out;
k++;
}
}
}
if (k) {
// record the last synthesized values
recordLastValueLocked(&mSensorEventBuffer[count], k);
count += k;
// sort the buffer by time-stamps
sortEventBuffer(mSensorEventBuffer, count);
}
}
}
// handle backward compatibility for RotationVector sensor
if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
for (int i = 0; i < count; i++) {
if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
// All the 4 components of the quaternion should be available
// No heading accuracy. Set it to -1
mSensorEventBuffer[i].data[4] = -1;
}
}
}
for (int i = 0; i < count; ++i) {
// Map flush_complete_events in the buffer to SensorEventConnections which called flush
// on the hardware sensor. mapFlushEventsToConnections[i] will be the
// SensorEventConnection mapped to the corresponding flush_complete_event in
// mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
mMapFlushEventsToConnections[i] = NULL;
if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
if (rec != NULL) {
mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
rec->removeFirstPendingFlushConnection();
}
}
// handle dynamic sensor meta events, process registration and unregistration of dynamic
// sensor based on content of event.
if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
const sensor_t& dynamicSensor =
*(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
handle, dynamicSensor.type, dynamicSensor.name);
if (mSensors.isNewHandle(handle)) {
const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
sensor_t s = dynamicSensor;
// make sure the dynamic sensor flag is set
s.flags |= DYNAMIC_SENSOR_MASK;
// force the handle to be consistent
s.handle = handle;
SensorInterface *si = new HardwareSensor(s, uuid);
// This will release hold on dynamic sensor meta, so it should be called
// after Sensor object is created.
device.handleDynamicSensorConnection(handle, true /*connected*/);
registerDynamicSensorLocked(si);
} else {
ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
}
} else {
int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
device.handleDynamicSensorConnection(handle, false /*connected*/);
if (!unregisterDynamicSensorLocked(handle)) {
ALOGE("Dynamic sensor release error.");
}
size_t numConnections = activeConnections.size();
for (size_t i=0 ; i < numConnections; ++i) {
if (activeConnections[i] != NULL) {
activeConnections[i]->removeSensor(handle);
}
}
}
}
}
// Send our events to clients. Check the state of wake lock for each client and release the
// lock if none of the clients need it.
bool needsWakeLock = false;
size_t numConnections = activeConnections.size();
for (size_t i=0 ; i < numConnections; ++i) {
if (activeConnections[i] != 0) {
activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
mMapFlushEventsToConnections);
needsWakeLock |= activeConnections[i]->needsWakeLock();
// If the connection has one-shot sensors, it may be cleaned up after first trigger.
// Early check for one-shot sensors.
if (activeConnections[i]->hasOneShotSensors()) {
cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
count);
}
}
}
if (mWakeLockAcquired && !needsWakeLock) {
setWakeLockAcquiredLocked(false);
}
} while (!Thread::exitPending());
ALOGW("Exiting SensorService::threadLoop => aborting...");
abort();
return false;
}
sp<Looper> SensorService::getLooper() const {
return mLooper;
}
void SensorService::resetAllWakeLockRefCounts() {
SortedVector< sp<SensorEventConnection> > activeConnections;
populateActiveConnections(&activeConnections);
{
Mutex::Autolock _l(mLock);
for (size_t i=0 ; i < activeConnections.size(); ++i) {
if (activeConnections[i] != 0) {
activeConnections[i]->resetWakeLockRefCount();
}
}
setWakeLockAcquiredLocked(false);
}
}
void SensorService::setWakeLockAcquiredLocked(bool acquire) {
if (acquire) {
if (!mWakeLockAcquired) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
mWakeLockAcquired = true;
}
mLooper->wake();
} else {
if (mWakeLockAcquired) {
release_wake_lock(WAKE_LOCK_NAME);
mWakeLockAcquired = false;
}
}
}
bool SensorService::isWakeLockAcquired() {
Mutex::Autolock _l(mLock);
return mWakeLockAcquired;
}
bool SensorService::SensorEventAckReceiver::threadLoop() {
ALOGD("new thread SensorEventAckReceiver");
sp<Looper> looper = mService->getLooper();
do {
bool wakeLockAcquired = mService->isWakeLockAcquired();
int timeout = -1;
if (wakeLockAcquired) timeout = 5000;
int ret = looper->pollOnce(timeout);
if (ret == ALOOPER_POLL_TIMEOUT) {
mService->resetAllWakeLockRefCounts();
}
} while(!Thread::exitPending());
return false;
}
void SensorService::recordLastValueLocked(
const sensors_event_t* buffer, size_t count) {
for (size_t i = 0; i < count; i++) {
if (buffer[i].type == SENSOR_TYPE_META_DATA ||
buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
continue;
}
auto logger = mRecentEvent.find(buffer[i].sensor);
if (logger != mRecentEvent.end()) {
logger->second->addEvent(buffer[i]);
}
}
}
void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
struct compar {
static int cmp(void const* lhs, void const* rhs) {
sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
return l->timestamp - r->timestamp;
}
};
qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
}
String8 SensorService::getSensorName(int handle) const {
return mSensors.getName(handle);
}
bool SensorService::isVirtualSensor(int handle) const {
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
return sensor != nullptr && sensor->isVirtual();
}
bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
int handle = event.sensor;
if (event.type == SENSOR_TYPE_META_DATA) {
handle = event.meta_data.sensor;
}
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
}
int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
// UUID is not supported for this device.
return 0;
}
if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
// This sensor can be uniquely identified in the system by
// the combination of its type and name.
return -1;
}
// We have a dynamic sensor.
if (!sHmacGlobalKeyIsValid) {
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
return 0;
}
// We want each app author/publisher to get a different ID, so that the
// same dynamic sensor cannot be tracked across apps by multiple
// authors/publishers. So we use both our UUID and our User ID.
// Note potential confusion:
// UUID => Universally Unique Identifier.
// UID => User Identifier.
// We refrain from using "uid" except as needed by API to try to
// keep this distinction clear.
auto appUserId = IPCThreadState::self()->getCallingUid();
uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
memcpy(uuidAndApp, &uuid, sizeof(uuid));
memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
// Now we use our key on our UUID/app combo to get the hash.
uint8_t hash[EVP_MAX_MD_SIZE];
unsigned int hashLen;
if (HMAC(EVP_sha256(),
sHmacGlobalKey, sizeof(sHmacGlobalKey),
uuidAndApp, sizeof(uuidAndApp),
hash, &hashLen) == nullptr) {
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
return 0;
}
int32_t id = 0;
if (hashLen < sizeof(id)) {
// We never expect this case, but out of paranoia, we handle it.
// Our 'id' length is already quite small, we don't want the
// effective length of it to be even smaller.
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
return 0;
}
// This is almost certainly less than all of 'hash', but it's as secure
// as we can be with our current 'id' length.
memcpy(&id, hash, sizeof(id));
// Note at the beginning of the function that we return the values of
// 0 and -1 to represent special cases. As a result, we can't return
// those as dynamic sensor IDs. If we happened to hash to one of those
// values, we change 'id' so we report as a dynamic sensor, and not as
// one of those special cases.
if (id == -1) {
id = -2;
} else if (id == 0) {
id = 1;
}
return id;
}
void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
for (auto &sensor : sensorList) {
int32_t id = getIdFromUuid(sensor.getUuid());
sensor.setId(id);
}
}
Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
char value[PROPERTY_VALUE_MAX];
property_get("debug.sensors", value, "0");
const Vector<Sensor>& initialSensorList = (atoi(value)) ?
mSensors.getUserDebugSensors() : mSensors.getUserSensors();
Vector<Sensor> accessibleSensorList;
for (size_t i = 0; i < initialSensorList.size(); i++) {
Sensor sensor = initialSensorList[i];
accessibleSensorList.add(sensor);
}
makeUuidsIntoIdsForSensorList(accessibleSensorList);
return accessibleSensorList;
}
Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
Vector<Sensor> accessibleSensorList;
mSensors.forEachSensor(
[&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
if (sensor.isDynamicSensor()) {
if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
accessibleSensorList.add(sensor);
} else {
ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
sensor.getName().string(),
sensor.getRequiredPermission().string(),
sensor.getRequiredAppOp());
}
}
return true;
});
makeUuidsIntoIdsForSensorList(accessibleSensorList);
return accessibleSensorList;
}
sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
int requestedMode, const String16& opPackageName) {
// Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
return NULL;
}
Mutex::Autolock _l(mLock);
// To create a client in DATA_INJECTION mode to inject data, SensorService should already be
// operating in DI mode.
if (requestedMode == DATA_INJECTION) {
if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
if (!isWhiteListedPackage(packageName)) return NULL;
}
uid_t uid = IPCThreadState::self()->getCallingUid();
pid_t pid = IPCThreadState::self()->getCallingPid();
String8 connPackageName =
(packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
String16 connOpPackageName =
(opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
requestedMode == DATA_INJECTION, connOpPackageName));
if (requestedMode == DATA_INJECTION) {
if (mActiveConnections.indexOf(result) < 0) {
mActiveConnections.add(result);
}
// Add the associated file descriptor to the Looper for polling whenever there is data to
// be injected.
result->updateLooperRegistration(mLooper);
}
return result;
}
int SensorService::isDataInjectionEnabled() {
Mutex::Autolock _l(mLock);
return (mCurrentOperatingMode == DATA_INJECTION);
}
sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
const native_handle *resource) {
Mutex::Autolock _l(mLock);
struct sensors_direct_mem_t mem = {
.type = type,
.format = format,
.size = size,
.handle = resource,
};
uid_t uid = IPCThreadState::self()->getCallingUid();
if (mem.handle == nullptr) {
ALOGE("Failed to clone resource handle");
return nullptr;
}
// check format
if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
ALOGE("Direct channel format %d is unsupported!", format);
return nullptr;
}
// check for duplication
for (auto &i : mDirectConnections) {
sp<SensorDirectConnection> connection(i.promote());
if (connection != nullptr && connection->isEquivalent(&mem)) {
ALOGE("Duplicate create channel request for the same share memory");
return nullptr;
}
}
// check specific to memory type
switch(type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
int fd = resource->data[0];
int size2 = ashmem_get_size_region(fd);
// check size consistency
if (size2 < static_cast<int>(size)) {
ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
size, size2);
return nullptr;
}
break;
}
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
// no specific checks for gralloc
break;
default:
ALOGE("Unknown direct connection memory type %d", type);
return nullptr;
}
native_handle_t *clone = native_handle_clone(resource);
if (!clone) {
return nullptr;
}
SensorDirectConnection* conn = nullptr;
SensorDevice& dev(SensorDevice::getInstance());
int channelHandle = dev.registerDirectChannel(&mem);
if (channelHandle <= 0) {
ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
} else {
mem.handle = clone;
conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
}
if (conn == nullptr) {
native_handle_close(clone);
native_handle_delete(clone);
} else {
// add to list of direct connections
// sensor service should never hold pointer or sp of SensorDirectConnection object.
mDirectConnections.add(wp<SensorDirectConnection>(conn));
}
return conn;
}
int SensorService::setOperationParameter(
int32_t handle, int32_t type,
const Vector<float> &floats, const Vector<int32_t> &ints) {
Mutex::Autolock _l(mLock);
if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
return PERMISSION_DENIED;
}
bool isFloat = true;
bool isCustom = false;
size_t expectSize = INT32_MAX;
switch (type) {
case AINFO_LOCAL_GEOMAGNETIC_FIELD:
isFloat = true;
expectSize = 3;
break;
case AINFO_LOCAL_GRAVITY:
isFloat = true;
expectSize = 1;
break;
case AINFO_DOCK_STATE:
case AINFO_HIGH_PERFORMANCE_MODE:
case AINFO_MAGNETIC_FIELD_CALIBRATION:
isFloat = false;
expectSize = 1;
break;
default:
// CUSTOM events must only contain float data; it may have variable size
if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
ints.size() ||
sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
handle < 0) {
return BAD_VALUE;
}
isFloat = true;
isCustom = true;
expectSize = floats.size();
break;
}
if (!isCustom && handle != -1) {
return BAD_VALUE;
}
// three events: first one is begin tag, last one is end tag, the one in the middle
// is the payload.
sensors_event_t event[3];
int64_t timestamp = elapsedRealtimeNano();
for (sensors_event_t* i = event; i < event + 3; i++) {
*i = (sensors_event_t) {
.version = sizeof(sensors_event_t),
.sensor = handle,
.type = SENSOR_TYPE_ADDITIONAL_INFO,
.timestamp = timestamp++,
.additional_info = (additional_info_event_t) {
.serial = 0
}
};
}
event[0].additional_info.type = AINFO_BEGIN;
event[1].additional_info.type = type;
event[2].additional_info.type = AINFO_END;
if (isFloat) {
if (floats.size() != expectSize) {
return BAD_VALUE;
}
for (size_t i = 0; i < expectSize; ++i) {
event[1].additional_info.data_float[i] = floats[i];
}
} else {
if (ints.size() != expectSize) {
return BAD_VALUE;
}
for (size_t i = 0; i < expectSize; ++i) {
event[1].additional_info.data_int32[i] = ints[i];
}
}
SensorDevice& dev(SensorDevice::getInstance());
for (sensors_event_t* i = event; i < event + 3; i++) {
int ret = dev.injectSensorData(i);
if (ret != NO_ERROR) {
return ret;
}
}
return NO_ERROR;
}
status_t SensorService::resetToNormalMode() {
Mutex::Autolock _l(mLock);
return resetToNormalModeLocked();
}
status_t SensorService::resetToNormalModeLocked() {
SensorDevice& dev(SensorDevice::getInstance());
status_t err = dev.setMode(NORMAL);
if (err == NO_ERROR) {
mCurrentOperatingMode = NORMAL;
dev.enableAllSensors();
}
return err;
}
void SensorService::cleanupConnection(SensorEventConnection* c) {
Mutex::Autolock _l(mLock);
const wp<SensorEventConnection> connection(c);
size_t size = mActiveSensors.size();
ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
for (size_t i=0 ; i<size ; ) {
int handle = mActiveSensors.keyAt(i);
if (c->hasSensor(handle)) {
ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor != nullptr) {
sensor->activate(c, false);
} else {
ALOGE("sensor interface of handle=0x%08x is null!", handle);
}
c->removeSensor(handle);
}
SensorRecord* rec = mActiveSensors.valueAt(i);
ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
ALOGD_IF(DEBUG_CONNECTIONS,
"removing connection %p for sensor[%zu].handle=0x%08x",
c, i, handle);
if (rec && rec->removeConnection(connection)) {
ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
mActiveSensors.removeItemsAt(i, 1);
mActiveVirtualSensors.erase(handle);
delete rec;
size--;
} else {
i++;
}
}
c->updateLooperRegistration(mLooper);
mActiveConnections.remove(connection);
BatteryService::cleanup(c->getUid());
if (c->needsWakeLock()) {
checkWakeLockStateLocked();
}
SensorDevice& dev(SensorDevice::getInstance());
dev.notifyConnectionDestroyed(c);
}
void SensorService::cleanupConnection(SensorDirectConnection* c) {
Mutex::Autolock _l(mLock);
SensorDevice& dev(SensorDevice::getInstance());
dev.unregisterDirectChannel(c->getHalChannelHandle());
mDirectConnections.remove(c);
}
sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
return mSensors.getInterface(handle);
}
status_t SensorService::enable(const sp<SensorEventConnection>& connection,
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
const String16& opPackageName) {
if (mInitCheck != NO_ERROR)
return mInitCheck;
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr ||
!canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
if (mCurrentOperatingMode != NORMAL
&& !isWhiteListedPackage(connection->getPackageName())) {
return INVALID_OPERATION;
}
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec == 0) {
rec = new SensorRecord(connection);
mActiveSensors.add(handle, rec);
if (sensor->isVirtual()) {
mActiveVirtualSensors.emplace(handle);
}
} else {
if (rec->addConnection(connection)) {
// this sensor is already activated, but we are adding a connection that uses it.
// Immediately send down the last known value of the requested sensor if it's not a
// "continuous" sensor.
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
// NOTE: The wake_up flag of this event may get set to
// WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
auto logger = mRecentEvent.find(handle);
if (logger != mRecentEvent.end()) {
sensors_event_t event;
// It is unlikely that this buffer is empty as the sensor is already active.
// One possible corner case may be two applications activating an on-change
// sensor at the same time.
if(logger->second->populateLastEvent(&event)) {
event.sensor = handle;
if (event.version == sizeof(sensors_event_t)) {
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
connection->sendEvents(&event, 1, NULL);
if (!connection->needsWakeLock() && mWakeLockAcquired) {
checkWakeLockStateLocked();
}
}
}
}
}
}
}
if (connection->addSensor(handle)) {
BatteryService::enableSensor(connection->getUid(), handle);
// the sensor was added (which means it wasn't already there)
// so, see if this connection becomes active
if (mActiveConnections.indexOf(connection) < 0) {
mActiveConnections.add(connection);
}
} else {
ALOGW("sensor %08x already enabled in connection %p (ignoring)",
handle, connection.get());
}
// Check maximum delay for the sensor.
nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
samplingPeriodNs = maxDelayNs;
}
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (samplingPeriodNs < minDelayNs) {
samplingPeriodNs = minDelayNs;
}
ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
"rate=%" PRId64 " timeout== %" PRId64"",
handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
maxBatchReportLatencyNs);
// Call flush() before calling activate() on the sensor. Wait for a first
// flush complete event before sending events on this connection. Ignore
// one-shot sensors which don't support flush(). Ignore on-change sensors
// to maintain the on-change logic (any on-change events except the initial
// one should be trigger by a change in value). Also if this sensor isn't
// already active, don't call flush().
if (err == NO_ERROR &&
sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
rec->getNumConnections() > 1) {
connection->setFirstFlushPending(handle, true);
status_t err_flush = sensor->flush(connection.get(), handle);
// Flush may return error if the underlying h/w sensor uses an older HAL.
if (err_flush == NO_ERROR) {
rec->addPendingFlushConnection(connection.get());
} else {
connection->setFirstFlushPending(handle, false);
}
}
if (err == NO_ERROR) {
ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
err = sensor->activate(connection.get(), true);
}
if (err == NO_ERROR) {
connection->updateLooperRegistration(mLooper);
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
SensorRegistrationInfo(handle, connection->getPackageName(),
samplingPeriodNs, maxBatchReportLatencyNs, true);
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
}
if (err != NO_ERROR) {
// batch/activate has failed, reset our state.
cleanupWithoutDisableLocked(connection, handle);
}
return err;
}
status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
if (mInitCheck != NO_ERROR)
return mInitCheck;
Mutex::Autolock _l(mLock);
status_t err = cleanupWithoutDisableLocked(connection, handle);
if (err == NO_ERROR) {
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
}
if (err == NO_ERROR) {
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
}
return err;
}
status_t SensorService::cleanupWithoutDisable(
const sp<SensorEventConnection>& connection, int handle) {
Mutex::Autolock _l(mLock);
return cleanupWithoutDisableLocked(connection, handle);
}
status_t SensorService::cleanupWithoutDisableLocked(
const sp<SensorEventConnection>& connection, int handle) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec) {
// see if this connection becomes inactive
if (connection->removeSensor(handle)) {
BatteryService::disableSensor(connection->getUid(), handle);
}
if (connection->hasAnySensor() == false) {
connection->updateLooperRegistration(mLooper);
mActiveConnections.remove(connection);
}
// see if this sensor becomes inactive
if (rec->removeConnection(connection)) {
mActiveSensors.removeItem(handle);
mActiveVirtualSensors.erase(handle);
delete rec;
}
return NO_ERROR;
}
return BAD_VALUE;
}
status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
int handle, nsecs_t ns, const String16& opPackageName) {
if (mInitCheck != NO_ERROR)
return mInitCheck;
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr ||
!canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
return BAD_VALUE;
}
if (ns < 0)
return BAD_VALUE;
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (ns < minDelayNs) {
ns = minDelayNs;
}
return sensor->setDelay(connection.get(), handle, ns);
}
status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
const String16& opPackageName) {
if (mInitCheck != NO_ERROR) return mInitCheck;
SensorDevice& dev(SensorDevice::getInstance());
const int halVersion = dev.getHalDeviceVersion();
status_t err(NO_ERROR);
Mutex::Autolock _l(mLock);
// Loop through all sensors for this connection and call flush on each of them.
for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
const int handle = connection->mSensorInfo.keyAt(i);
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr) {
continue;
}
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
ALOGE("flush called on a one-shot sensor");
err = INVALID_OPERATION;
continue;
}
if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
// For older devices just increment pending flush count which will send a trivial
// flush complete event.
connection->incrementPendingFlushCount(handle);
} else {
if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
err = INVALID_OPERATION;
continue;
}
status_t err_flush = sensor->flush(connection.get(), handle);
if (err_flush == NO_ERROR) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec != NULL) rec->addPendingFlushConnection(connection);
}
err = (err_flush != NO_ERROR) ? err_flush : err;
}
}
return err;
}
bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
const String16& opPackageName) {
const String8& requiredPermission = sensor.getRequiredPermission();
if (requiredPermission.length() <= 0) {
return true;
}
bool hasPermission = false;
// Runtime permissions can't use the cache as they may change.
if (sensor.isRequiredPermissionRuntime()) {
hasPermission = checkPermission(String16(requiredPermission),
IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
} else {
hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
}
if (!hasPermission) {
ALOGE("%s a sensor (%s) without holding its required permission: %s",
operation, sensor.getName().string(), sensor.getRequiredPermission().string());
return false;
}
const int32_t opCode = sensor.getRequiredAppOp();
if (opCode >= 0) {
AppOpsManager appOps;
if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
!= AppOpsManager::MODE_ALLOWED) {
ALOGE("%s a sensor (%s) without enabled required app op: %d",
operation, sensor.getName().string(), opCode);
return false;
}
}
return true;
}
void SensorService::checkWakeLockState() {
Mutex::Autolock _l(mLock);
checkWakeLockStateLocked();
}
void SensorService::checkWakeLockStateLocked() {
if (!mWakeLockAcquired) {
return;
}
bool releaseLock = true;
for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
if (connection->needsWakeLock()) {
releaseLock = false;
break;
}
}
}
if (releaseLock) {
setWakeLockAcquiredLocked(false);
}
}
void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
Mutex::Autolock _l(mLock);
connection->writeToSocketFromCache();
if (connection->needsWakeLock()) {
setWakeLockAcquiredLocked(true);
}
}
void SensorService::populateActiveConnections(
SortedVector< sp<SensorEventConnection> >* activeConnections) {
Mutex::Autolock _l(mLock);
for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
activeConnections->add(connection);
}
}
}
bool SensorService::isWhiteListedPackage(const String8& packageName) {
return (packageName.contains(mWhiteListedPackage.string()));
}
bool SensorService::isOperationRestricted(const String16& opPackageName) {
Mutex::Autolock _l(mLock);
if (mCurrentOperatingMode != RESTRICTED) {
String8 package(opPackageName);
return !isWhiteListedPackage(package);
}
return false;
}
}; // namespace android
|