1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define __STDC_LIMIT_MACROS
#include <assert.h>
#include <stdint.h>
#include <utils/LinearTransform.h>
namespace android {
template<class T> static inline T ABS(T x) { return (x < 0) ? -x : x; }
// Static math methods involving linear transformations
static bool scale_u64_to_u64(
uint64_t val,
uint32_t N,
uint32_t D,
uint64_t* res,
bool round_up_not_down) {
uint64_t tmp1, tmp2;
uint32_t r;
assert(res);
assert(D);
// Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit
// integer X.
// Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit
// integer X.
// Let X[A, B] with A <= B denote bits A through B of the integer X.
// Let (A | B) denote the concatination of two 32 bit ints, A and B.
// IOW X = (A | B) => U32(X) == A && L32(X) == B
//
// compute M = val * N (a 96 bit int)
// ---------------------------------
// tmp2 = U32(val) * N (a 64 bit int)
// tmp1 = L32(val) * N (a 64 bit int)
// which means
// M = val * N = (tmp2 << 32) + tmp1
tmp2 = (val >> 32) * N;
tmp1 = (val & UINT32_MAX) * N;
// compute M[32, 95]
// tmp2 = tmp2 + U32(tmp1)
// = (U32(val) * N) + U32(L32(val) * N)
// = M[32, 95]
tmp2 += tmp1 >> 32;
// if M[64, 95] >= D, then M/D has bits > 63 set and we have
// an overflow.
if ((tmp2 >> 32) >= D) {
*res = UINT64_MAX;
return false;
}
// Divide. Going in we know
// tmp2 = M[32, 95]
// U32(tmp2) < D
r = tmp2 % D;
tmp2 /= D;
// At this point
// tmp1 = L32(val) * N
// tmp2 = M[32, 95] / D
// = (M / D)[32, 95]
// r = M[32, 95] % D
// U32(tmp2) = 0
//
// compute tmp1 = (r | M[0, 31])
tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32);
// Divide again. Keep the remainder around in order to round properly.
r = tmp1 % D;
tmp1 /= D;
// At this point
// tmp2 = (M / D)[32, 95]
// tmp1 = (M / D)[ 0, 31]
// r = M % D
// U32(tmp1) = 0
// U32(tmp2) = 0
// Pack the result and deal with the round-up case (As well as the
// remote possiblility over overflow in such a case).
*res = (tmp2 << 32) | tmp1;
if (r && round_up_not_down) {
++(*res);
if (!(*res)) {
*res = UINT64_MAX;
return false;
}
}
return true;
}
static bool linear_transform_s64_to_s64(
int64_t val,
int64_t basis1,
int32_t N,
uint32_t D,
int64_t basis2,
int64_t* out) {
uint64_t scaled, res;
uint64_t abs_val;
bool is_neg;
if (!out)
return false;
// Compute abs(val - basis_64). Keep track of whether or not this delta
// will be negative after the scale opertaion.
if (val < basis1) {
is_neg = true;
abs_val = basis1 - val;
} else {
is_neg = false;
abs_val = val - basis1;
}
if (N < 0)
is_neg = !is_neg;
if (!scale_u64_to_u64(abs_val,
ABS(N),
D,
&scaled,
is_neg))
return false; // overflow/undeflow
// if scaled is >= 0x8000<etc>, then we are going to overflow or
// underflow unless ABS(basis2) is large enough to pull us back into the
// non-overflow/underflow region.
if (scaled & INT64_MIN) {
if (is_neg && (basis2 < 0))
return false; // certain underflow
if (!is_neg && (basis2 >= 0))
return false; // certain overflow
if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX))
return false; // not enough
// Looks like we are OK
*out = (is_neg ? (-scaled) : scaled) + basis2;
} else {
// Scaled fits within signed bounds, so we just need to check for
// over/underflow for two signed integers. Basically, if both scaled
// and basis2 have the same sign bit, and the result has a different
// sign bit, then we have under/overflow. An easy way to compute this
// is
// (scaled_signbit XNOR basis_signbit) &&
// (scaled_signbit XOR res_signbit)
// ==
// (scaled_signbit XOR basis_signbit XOR 1) &&
// (scaled_signbit XOR res_signbit)
if (is_neg)
scaled = -scaled;
res = scaled + basis2;
if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN)
return false;
*out = res;
}
return true;
}
bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const {
if (0 == a_to_b_denom)
return false;
return linear_transform_s64_to_s64(a_in,
a_zero,
a_to_b_numer,
a_to_b_denom,
b_zero,
b_out);
}
bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const {
if (0 == a_to_b_numer)
return false;
return linear_transform_s64_to_s64(b_in,
b_zero,
a_to_b_denom,
a_to_b_numer,
a_zero,
a_out);
}
template <class T> void LinearTransform::reduce(T* N, T* D) {
T a, b;
if (!N || !D || !(*D)) {
assert(false);
return;
}
a = *N;
b = *D;
if (a == 0) {
*D = 1;
return;
}
// This implements Euclid's method to find GCD.
if (a < b) {
T tmp = a;
a = b;
b = tmp;
}
while (1) {
// a is now the greater of the two.
const T remainder = a % b;
if (remainder == 0) {
*N /= b;
*D /= b;
return;
}
// by swapping remainder and b, we are guaranteeing that a is
// still the greater of the two upon entrance to the loop.
a = b;
b = remainder;
}
};
template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D);
template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D);
void LinearTransform::reduce(int32_t* N, uint32_t* D) {
if (N && D && *D) {
if (*N < 0) {
*N = -(*N);
reduce(reinterpret_cast<uint32_t*>(N), D);
*N = -(*N);
} else {
reduce(reinterpret_cast<uint32_t*>(N), D);
}
}
}
} // namespace android
|