1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
/* libs/opengles/primitives.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "context.h"
#include "primitives.h"
#include "light.h"
#include "matrix.h"
#include "vertex.h"
#include "fp.h"
#include "TextureObjectManager.h"
extern "C" void iterators0032(const void* that,
int32_t* it, int32_t c0, int32_t c1, int32_t c2);
namespace android {
// ----------------------------------------------------------------------------
static void primitive_point(ogles_context_t* c, vertex_t* v);
static void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
static void primitive_clip_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static void primitive_nop_point(ogles_context_t* c, vertex_t* v);
static void primitive_nop_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
static void primitive_nop_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static inline bool cull_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static void lerp_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static void lerp_texcoords(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static void lerp_texcoords_w(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static void triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static void clip_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
static unsigned int clip_line(ogles_context_t* c,
vertex_t* s, vertex_t* p);
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
static void lightTriangleDarkSmooth(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
if (!(v0->flags & vertex_t::LIT)) {
v0->flags |= vertex_t::LIT;
const GLvoid* cp = c->arrays.color.element(
v0->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v0->color.v, cp);
}
if (!(v1->flags & vertex_t::LIT)) {
v1->flags |= vertex_t::LIT;
const GLvoid* cp = c->arrays.color.element(
v1->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v1->color.v, cp);
}
if(!(v2->flags & vertex_t::LIT)) {
v2->flags |= vertex_t::LIT;
const GLvoid* cp = c->arrays.color.element(
v2->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v2->color.v, cp);
}
}
static void lightTriangleDarkFlat(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
if (!(v2->flags & vertex_t::LIT)) {
v2->flags |= vertex_t::LIT;
const GLvoid* cp = c->arrays.color.element(
v2->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v2->color.v, cp);
}
// configure the rasterizer here, before we clip
c->rasterizer.procs.color4xv(c, v2->color.v);
}
static void lightTriangleSmooth(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
if (!(v0->flags & vertex_t::LIT))
c->lighting.lightVertex(c, v0);
if (!(v1->flags & vertex_t::LIT))
c->lighting.lightVertex(c, v1);
if(!(v2->flags & vertex_t::LIT))
c->lighting.lightVertex(c, v2);
}
static void lightTriangleFlat(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
if (!(v2->flags & vertex_t::LIT))
c->lighting.lightVertex(c, v2);
// configure the rasterizer here, before we clip
c->rasterizer.procs.color4xv(c, v2->color.v);
}
// The fog versions...
static inline
void lightVertexDarkSmoothFog(ogles_context_t* c, vertex_t* v)
{
if (!(v->flags & vertex_t::LIT)) {
v->flags |= vertex_t::LIT;
v->fog = c->fog.fog(c, v->eye.z);
const GLvoid* cp = c->arrays.color.element(
v->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v->color.v, cp);
}
}
static inline
void lightVertexDarkFlatFog(ogles_context_t* c, vertex_t* v)
{
if (!(v->flags & vertex_t::LIT)) {
v->flags |= vertex_t::LIT;
v->fog = c->fog.fog(c, v->eye.z);
}
}
static inline
void lightVertexSmoothFog(ogles_context_t* c, vertex_t* v)
{
if (!(v->flags & vertex_t::LIT)) {
v->fog = c->fog.fog(c, v->eye.z);
c->lighting.lightVertex(c, v);
}
}
static void lightTriangleDarkSmoothFog(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
lightVertexDarkSmoothFog(c, v0);
lightVertexDarkSmoothFog(c, v1);
lightVertexDarkSmoothFog(c, v2);
}
static void lightTriangleDarkFlatFog(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
lightVertexDarkFlatFog(c, v0);
lightVertexDarkFlatFog(c, v1);
lightVertexDarkSmoothFog(c, v2);
// configure the rasterizer here, before we clip
c->rasterizer.procs.color4xv(c, v2->color.v);
}
static void lightTriangleSmoothFog(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
lightVertexSmoothFog(c, v0);
lightVertexSmoothFog(c, v1);
lightVertexSmoothFog(c, v2);
}
static void lightTriangleFlatFog(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
lightVertexDarkFlatFog(c, v0);
lightVertexDarkFlatFog(c, v1);
lightVertexSmoothFog(c, v2);
// configure the rasterizer here, before we clip
c->rasterizer.procs.color4xv(c, v2->color.v);
}
typedef void (*light_primitive_t)(ogles_context_t*,
vertex_t*, vertex_t*, vertex_t*);
// fog 0x4, light 0x2, smooth 0x1
static const light_primitive_t lightPrimitive[8] = {
lightTriangleDarkFlat, // no fog | dark | flat
lightTriangleDarkSmooth, // no fog | dark | smooth
lightTriangleFlat, // no fog | light | flat
lightTriangleSmooth, // no fog | light | smooth
lightTriangleDarkFlatFog, // fog | dark | flat
lightTriangleDarkSmoothFog, // fog | dark | smooth
lightTriangleFlatFog, // fog | light | flat
lightTriangleSmoothFog // fog | light | smooth
};
void ogles_validate_primitives(ogles_context_t* c)
{
const uint32_t enables = c->rasterizer.state.enables;
// set up the lighting/shading/smoothing/fogging function
int index = enables & GGL_ENABLE_SMOOTH ? 0x1 : 0;
index |= c->lighting.enable ? 0x2 : 0;
index |= enables & GGL_ENABLE_FOG ? 0x4 : 0;
c->lighting.lightTriangle = lightPrimitive[index];
// set up the primitive renderers
if (ggl_likely(c->arrays.vertex.enable)) {
c->prims.renderPoint = primitive_point;
c->prims.renderLine = primitive_line;
c->prims.renderTriangle = primitive_clip_triangle;
} else {
c->prims.renderPoint = primitive_nop_point;
c->prims.renderLine = primitive_nop_line;
c->prims.renderTriangle = primitive_nop_triangle;
}
}
// ----------------------------------------------------------------------------
void compute_iterators_t::initTriangle(
vertex_t const* v0, vertex_t const* v1, vertex_t const* v2)
{
m_dx01 = v1->window.x - v0->window.x;
m_dy10 = v0->window.y - v1->window.y;
m_dx20 = v0->window.x - v2->window.x;
m_dy02 = v2->window.y - v0->window.y;
m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
}
void compute_iterators_t::initLine(
vertex_t const* v0, vertex_t const* v1)
{
m_dx01 = m_dy02 = v1->window.x - v0->window.x;
m_dy10 = m_dx20 = v0->window.y - v1->window.y;
m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
}
void compute_iterators_t::initLerp(vertex_t const* v0, uint32_t enables)
{
m_x0 = v0->window.x;
m_y0 = v0->window.y;
const GGLcoord area = (m_area + TRI_HALF) >> TRI_FRACTION_BITS;
const GGLcoord minArea = 2; // cannot be inverted
// triangles with an area smaller than 1.0 are not smooth-shaded
int q=0, s=0, d=0;
if (abs(area) >= minArea) {
// Here we do some voodoo magic, to compute a suitable scale
// factor for deltas/area:
// First compute the 1/area with full 32-bits precision,
// gglRecipQNormalized returns a number [-0.5, 0.5[ and an exponent.
d = gglRecipQNormalized(area, &q);
// Then compute the minimum left-shift to not overflow the muls
// below.
s = 32 - gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
// We'll keep 16-bits of precision for deltas/area. So we need
// to shift everything left an extra 15 bits.
s += 15;
// make sure all final shifts are not > 32, because gglMulx
// can't handle it.
if (s < q) s = q;
if (s > 32) {
d >>= 32-s;
s = 32;
}
}
m_dx01 = gglMulx(m_dx01, d, s);
m_dy10 = gglMulx(m_dy10, d, s);
m_dx20 = gglMulx(m_dx20, d, s);
m_dy02 = gglMulx(m_dy02, d, s);
m_area_scale = 32 + q - s;
m_scale = 0;
if (enables & GGL_ENABLE_TMUS) {
const int A = gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
const int B = gglClz(abs(m_x0)|abs(m_y0));
m_scale = max(0, 32 - (A + 16)) +
max(0, 32 - (B + TRI_FRACTION_BITS)) + 1;
}
}
int compute_iterators_t::iteratorsScale(GGLfixed* it,
int32_t c0, int32_t c1, int32_t c2) const
{
int32_t dc01 = c1 - c0;
int32_t dc02 = c2 - c0;
const int A = gglClz(abs(c0));
const int B = gglClz(abs(dc01)|abs(dc02));
const int scale = min(A, B - m_scale) - 2;
if (scale >= 0) {
c0 <<= scale;
dc01 <<= scale;
dc02 <<= scale;
} else {
c0 >>= -scale;
dc01 >>= -scale;
dc02 >>= -scale;
}
const int s = m_area_scale;
int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
int32_t c = c0 - (gglMulAddx(dcdx, m_x0,
gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
it[0] = c;
it[1] = dcdx;
it[2] = dcdy;
return scale;
}
void compute_iterators_t::iterators1616(GGLfixed* it,
GGLfixed c0, GGLfixed c1, GGLfixed c2) const
{
const GGLfixed dc01 = c1 - c0;
const GGLfixed dc02 = c2 - c0;
// 16.16 x 16.16 == 32.32 --> 16.16
const int s = m_area_scale;
int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
int32_t c = c0 - (gglMulAddx(dcdx, m_x0,
gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
it[0] = c;
it[1] = dcdx;
it[2] = dcdy;
}
void compute_iterators_t::iterators0032(int64_t* it,
int32_t c0, int32_t c1, int32_t c2) const
{
const int s = m_area_scale - 16;
int32_t dc01 = (c1 - c0)>>s;
int32_t dc02 = (c2 - c0)>>s;
// 16.16 x 16.16 == 32.32
int64_t dcdx = gglMulii(dc01, m_dy02) + gglMulii(dc02, m_dy10);
int64_t dcdy = gglMulii(dc02, m_dx01) + gglMulii(dc01, m_dx20);
it[ 0] = (c0<<16) - ((dcdx*m_x0 + dcdy*m_y0)>>4);
it[ 1] = dcdx;
it[ 2] = dcdy;
}
#if defined(__arm__) && !defined(__thumb__)
inline void compute_iterators_t::iterators0032(int32_t* it,
int32_t c0, int32_t c1, int32_t c2) const
{
::iterators0032(this, it, c0, c1, c2);
}
#else
void compute_iterators_t::iterators0032(int32_t* it,
int32_t c0, int32_t c1, int32_t c2) const
{
int64_t it64[3];
iterators0032(it64, c0, c1, c2);
it[0] = it64[0];
it[1] = it64[1];
it[2] = it64[2];
}
#endif
// ----------------------------------------------------------------------------
static inline int32_t clampZ(GLfixed z) CONST;
int32_t clampZ(GLfixed z) {
z = (z & ~(z>>31));
if (z >= 0x10000)
z = 0xFFFF;
return z;
}
static __attribute__((noinline))
void fetch_texcoord_impl(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
vertex_t* const vtx[3] = { v0, v1, v2 };
array_t const * const texcoordArray = c->arrays.texture;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
if (!(c->rasterizer.state.texture[i].enable))
continue;
for (int j=0 ; j<3 ; j++) {
vertex_t* const v = vtx[j];
if (v->flags & vertex_t::TT)
continue;
// NOTE: here we could compute automatic texgen
// such as sphere/cube maps, instead of fetching them
// from the textcoord array.
vec4_t& coords = v->texture[i];
const GLubyte* tp = texcoordArray[i].element(
v->index & vertex_cache_t::INDEX_MASK);
texcoordArray[i].fetch(c, coords.v, tp);
// transform texture coordinates...
coords.Q = 0x10000;
const transform_t& tr = c->transforms.texture[i].transform;
if (ggl_unlikely(tr.ops)) {
c->arrays.tex_transform[i](&tr, &coords, &coords);
}
// divide by Q
const GGLfixed q = coords.Q;
if (ggl_unlikely(q != 0x10000)) {
const int32_t qinv = gglRecip28(q);
coords.S = gglMulx(coords.S, qinv, 28);
coords.T = gglMulx(coords.T, qinv, 28);
}
}
}
v0->flags |= vertex_t::TT;
v1->flags |= vertex_t::TT;
v2->flags |= vertex_t::TT;
}
inline void fetch_texcoord(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
const uint32_t enables = c->rasterizer.state.enables;
if (!(enables & GGL_ENABLE_TMUS))
return;
// Fetch & transform texture coordinates...
if (ggl_likely(v0->flags & v1->flags & v2->flags & vertex_t::TT)) {
// already done for all three vertices, bail...
return;
}
fetch_texcoord_impl(c, v0, v1, v2);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Point
#endif
void primitive_nop_point(ogles_context_t*, vertex_t*) {
}
void primitive_point(ogles_context_t* c, vertex_t* v)
{
// lighting & clamping...
const uint32_t enables = c->rasterizer.state.enables;
if (ggl_unlikely(!(v->flags & vertex_t::LIT))) {
if (c->lighting.enable) {
c->lighting.lightVertex(c, v);
} else {
v->flags |= vertex_t::LIT;
const GLvoid* cp = c->arrays.color.element(
v->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v->color.v, cp);
}
if (enables & GGL_ENABLE_FOG) {
v->fog = c->fog.fog(c, v->eye.z);
}
}
// XXX: we don't need to do that each-time
// if color array and lighting not enabled
c->rasterizer.procs.color4xv(c, v->color.v);
// XXX: look into ES point-sprite extension
if (enables & GGL_ENABLE_TMUS) {
fetch_texcoord(c, v,v,v);
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
if (!c->rasterizer.state.texture[i].enable)
continue;
int32_t itt[8];
itt[1] = itt[2] = itt[4] = itt[5] = 0;
itt[6] = itt[7] = 16; // XXX: check that
if (c->rasterizer.state.texture[i].s_wrap == GGL_CLAMP) {
int width = c->textures.tmu[i].texture->surface.width;
itt[0] = v->texture[i].S * width;
itt[6] = 0;
}
if (c->rasterizer.state.texture[i].t_wrap == GGL_CLAMP) {
int height = c->textures.tmu[i].texture->surface.height;
itt[3] = v->texture[i].T * height;
itt[7] = 0;
}
c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
}
}
if (enables & GGL_ENABLE_DEPTH_TEST) {
int32_t itz[3];
itz[0] = clampZ(v->window.z) * 0x00010001;
itz[1] = itz[2] = 0;
c->rasterizer.procs.zGrad3xv(c, itz);
}
if (enables & GGL_ENABLE_FOG) {
GLfixed itf[3];
itf[0] = v->fog;
itf[1] = itf[2] = 0;
c->rasterizer.procs.fogGrad3xv(c, itf);
}
// Render our point...
c->rasterizer.procs.pointx(c, v->window.v, c->point.size);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Line
#endif
void primitive_nop_line(ogles_context_t*, vertex_t*, vertex_t*) {
}
void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1)
{
// get texture coordinates
fetch_texcoord(c, v0, v1, v1);
// light/shade the vertices first (they're copied below)
c->lighting.lightTriangle(c, v0, v1, v1);
// clip the line if needed
if (ggl_unlikely((v0->flags | v1->flags) & vertex_t::CLIP_ALL)) {
unsigned int count = clip_line(c, v0, v1);
if (ggl_unlikely(count == 0))
return;
}
// compute iterators...
const uint32_t enables = c->rasterizer.state.enables;
const uint32_t mask = GGL_ENABLE_TMUS |
GGL_ENABLE_SMOOTH |
GGL_ENABLE_W |
GGL_ENABLE_FOG |
GGL_ENABLE_DEPTH_TEST;
if (ggl_unlikely(enables & mask)) {
c->lerp.initLine(v0, v1);
lerp_triangle(c, v0, v1, v0);
}
// render our line
c->rasterizer.procs.linex(c, v0->window.v, v1->window.v, c->line.width);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Triangle
#endif
void primitive_nop_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2) {
}
void primitive_clip_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
uint32_t cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
if (ggl_likely(!cc)) {
// code below must be as optimized as possible, this is the
// common code path.
// This triangle is not clipped, test if it's culled
// unclipped triangle...
c->lerp.initTriangle(v0, v1, v2);
if (cull_triangle(c, v0, v1, v2))
return; // culled!
// Fetch all texture coordinates if needed
fetch_texcoord(c, v0, v1, v2);
// light (or shade) our triangle!
c->lighting.lightTriangle(c, v0, v1, v2);
triangle(c, v0, v1, v2);
return;
}
// The assumption here is that we're not going to clip very often,
// and even more rarely will we clip a triangle that ends up
// being culled out. So it's okay to light the vertices here, even though
// in a few cases we won't render the triangle (if culled).
// Fetch texture coordinates...
fetch_texcoord(c, v0, v1, v2);
// light (or shade) our triangle!
c->lighting.lightTriangle(c, v0, v1, v2);
clip_triangle(c, v0, v1, v2);
}
// -----------------------------------------------------------------------
void triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
// compute iterators...
const uint32_t enables = c->rasterizer.state.enables;
const uint32_t mask = GGL_ENABLE_TMUS |
GGL_ENABLE_SMOOTH |
GGL_ENABLE_W |
GGL_ENABLE_FOG |
GGL_ENABLE_DEPTH_TEST;
if (ggl_likely(enables & mask))
lerp_triangle(c, v0, v1, v2);
c->rasterizer.procs.trianglex(c, v0->window.v, v1->window.v, v2->window.v);
}
void lerp_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
const uint32_t enables = c->rasterizer.state.enables;
c->lerp.initLerp(v0, enables);
// set up texture iterators
if (enables & GGL_ENABLE_TMUS) {
if (enables & GGL_ENABLE_W) {
lerp_texcoords_w(c, v0, v1, v2);
} else {
lerp_texcoords(c, v0, v1, v2);
}
}
// set up the color iterators
const compute_iterators_t& lerp = c->lerp;
if (enables & GGL_ENABLE_SMOOTH) {
GLfixed itc[12];
for (int i=0 ; i<4 ; i++) {
const GGLcolor c0 = v0->color.v[i] * 255;
const GGLcolor c1 = v1->color.v[i] * 255;
const GGLcolor c2 = v2->color.v[i] * 255;
lerp.iterators1616(&itc[i*3], c0, c1, c2);
}
c->rasterizer.procs.colorGrad12xv(c, itc);
}
if (enables & GGL_ENABLE_DEPTH_TEST) {
int32_t itz[3];
const int32_t v0z = clampZ(v0->window.z);
const int32_t v1z = clampZ(v1->window.z);
const int32_t v2z = clampZ(v2->window.z);
if (ggl_unlikely(c->polygonOffset.enable)) {
const int32_t units = (c->polygonOffset.units << 16);
const GLfixed factor = c->polygonOffset.factor;
if (factor) {
int64_t itz64[3];
lerp.iterators0032(itz64, v0z, v1z, v2z);
int64_t maxDepthSlope = max(itz64[1], itz64[2]);
itz[0] = uint32_t(itz64[0])
+ uint32_t((maxDepthSlope*factor)>>16) + units;
itz[1] = uint32_t(itz64[1]);
itz[2] = uint32_t(itz64[2]);
} else {
lerp.iterators0032(itz, v0z, v1z, v2z);
itz[0] += units;
}
} else {
lerp.iterators0032(itz, v0z, v1z, v2z);
}
c->rasterizer.procs.zGrad3xv(c, itz);
}
if (ggl_unlikely(enables & GGL_ENABLE_FOG)) {
GLfixed itf[3];
lerp.iterators1616(itf, v0->fog, v1->fog, v2->fog);
c->rasterizer.procs.fogGrad3xv(c, itf);
}
}
static inline
int compute_lod(ogles_context_t* c, int i,
int32_t s0, int32_t t0, int32_t s1, int32_t t1, int32_t s2, int32_t t2)
{
// Compute mipmap level / primitive
// rho = sqrt( texelArea / area )
// lod = log2( rho )
// lod = log2( texelArea / area ) / 2
// lod = (log2( texelArea ) - log2( area )) / 2
const compute_iterators_t& lerp = c->lerp;
const GGLcoord area = abs(lerp.area());
const int w = c->textures.tmu[i].texture->surface.width;
const int h = c->textures.tmu[i].texture->surface.height;
const int shift = 16 + (16 - TRI_FRACTION_BITS);
int32_t texelArea = abs( gglMulx(s1-s0, t2-t0, shift) -
gglMulx(s2-s0, t1-t0, shift) )*w*h;
int log2TArea = (32-TRI_FRACTION_BITS -1) - gglClz(texelArea);
int log2Area = (32-TRI_FRACTION_BITS*2-1) - gglClz(area);
int lod = (log2TArea - log2Area + 1) >> 1;
return lod;
}
void lerp_texcoords(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
const compute_iterators_t& lerp = c->lerp;
int32_t itt[8] __attribute__((aligned(16)));
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
const texture_t& tmu = c->rasterizer.state.texture[i];
if (!tmu.enable)
continue;
// compute the jacobians using block floating-point
int32_t s0 = v0->texture[i].S;
int32_t t0 = v0->texture[i].T;
int32_t s1 = v1->texture[i].S;
int32_t t1 = v1->texture[i].T;
int32_t s2 = v2->texture[i].S;
int32_t t2 = v2->texture[i].T;
const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
c->rasterizer.procs.bindTextureLod(c, i,
&c->textures.tmu[i].texture->mip(lod));
}
// premultiply (s,t) when clampling
if (tmu.s_wrap == GGL_CLAMP) {
const int width = tmu.surface.width;
s0 *= width;
s1 *= width;
s2 *= width;
}
if (tmu.t_wrap == GGL_CLAMP) {
const int height = tmu.surface.height;
t0 *= height;
t1 *= height;
t2 *= height;
}
itt[6] = -lerp.iteratorsScale(itt+0, s0, s1, s2);
itt[7] = -lerp.iteratorsScale(itt+3, t0, t1, t2);
c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
}
}
void lerp_texcoords_w(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
const compute_iterators_t& lerp = c->lerp;
int32_t itt[8] __attribute__((aligned(16)));
int32_t itw[3];
// compute W's scale to 2.30
int32_t w0 = v0->window.w;
int32_t w1 = v1->window.w;
int32_t w2 = v2->window.w;
int wscale = 32 - gglClz(w0|w1|w2);
// compute the jacobian using block floating-point
int sc = lerp.iteratorsScale(itw, w0, w1, w2);
sc += wscale - 16;
c->rasterizer.procs.wGrad3xv(c, itw);
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
const texture_t& tmu = c->rasterizer.state.texture[i];
if (!tmu.enable)
continue;
// compute the jacobians using block floating-point
int32_t s0 = v0->texture[i].S;
int32_t t0 = v0->texture[i].T;
int32_t s1 = v1->texture[i].S;
int32_t t1 = v1->texture[i].T;
int32_t s2 = v2->texture[i].S;
int32_t t2 = v2->texture[i].T;
const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
c->rasterizer.procs.bindTextureLod(c, i,
&c->textures.tmu[i].texture->mip(lod));
}
// premultiply (s,t) when clampling
if (tmu.s_wrap == GGL_CLAMP) {
const int width = tmu.surface.width;
s0 *= width;
s1 *= width;
s2 *= width;
}
if (tmu.t_wrap == GGL_CLAMP) {
const int height = tmu.surface.height;
t0 *= height;
t1 *= height;
t2 *= height;
}
s0 = gglMulx(s0, w0, wscale);
t0 = gglMulx(t0, w0, wscale);
s1 = gglMulx(s1, w1, wscale);
t1 = gglMulx(t1, w1, wscale);
s2 = gglMulx(s2, w2, wscale);
t2 = gglMulx(t2, w2, wscale);
itt[6] = sc - lerp.iteratorsScale(itt+0, s0, s1, s2);
itt[7] = sc - lerp.iteratorsScale(itt+3, t0, t1, t2);
c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
}
}
static inline
bool cull_triangle(ogles_context_t* c, vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
if (ggl_likely(c->cull.enable)) {
const GLenum winding = (c->lerp.area() > 0) ? GL_CW : GL_CCW;
const GLenum face = (winding == c->cull.frontFace) ? GL_FRONT : GL_BACK;
if (face == c->cull.cullFace)
return true; // culled!
}
return false;
}
static inline
GLfixed frustumPlaneDist(int plane, const vec4_t& s)
{
const GLfixed d = s.v[ plane >> 1 ];
return ((plane & 1) ? (s.w - d) : (s.w + d));
}
static inline
int32_t clipDivide(GLfixed a, GLfixed b) {
// returns a 4.28 fixed-point
return gglMulDivi(1LU<<28, a, b);
}
void clip_triangle(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
uint32_t all_cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
vertex_t *p0, *p1, *p2;
const int MAX_CLIPPING_PLANES = 6 + OGLES_MAX_CLIP_PLANES;
const int MAX_VERTICES = 3;
// Temporary buffer to hold the new vertices. Each plane can add up to
// two new vertices (because the polygon is convex).
// We need one extra element, to handle an overflow case when
// the polygon degenerates into something non convex.
vertex_t buffer[MAX_CLIPPING_PLANES * 2 + 1]; // ~3KB
vertex_t* buf = buffer;
// original list of vertices (polygon to clip, in fact this
// function works with an arbitrary polygon).
vertex_t* in[3] = { v0, v1, v2 };
// output lists (we need 2, which we use back and forth)
// (maximum outpout list's size is MAX_CLIPPING_PLANES + MAX_VERTICES)
// 2 more elements for overflow when non convex polygons.
vertex_t* out[2][MAX_CLIPPING_PLANES + MAX_VERTICES + 2];
unsigned int outi = 0;
// current input list
vertex_t** ivl = in;
// 3 input vertices, 0 in the output list, first plane
unsigned int ic = 3;
// User clip-planes first, the clipping is always done in eye-coordinate
// this is basically the same algorithm than for the view-volume
// clipping, except for the computation of the distance (vertex, plane)
// and the fact that we need to compute the eye-coordinates of each
// new vertex we create.
if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
{
unsigned int plane = 0;
uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
do {
if (cc & 1) {
// pointers to our output list (head and current)
vertex_t** const ovl = &out[outi][0];
vertex_t** output = ovl;
unsigned int oc = 0;
unsigned int sentinel = 0;
// previous vertex, compute distance to the plane
vertex_t* s = ivl[ic-1];
const vec4_t& equation = c->clipPlanes.plane[plane].equation;
GLfixed sd = dot4(equation.v, s->eye.v);
// clip each vertex against this plane...
for (unsigned int i=0 ; i<ic ; i++) {
vertex_t* p = ivl[i];
const GLfixed pd = dot4(equation.v, p->eye.v);
if (sd >= 0) {
if (pd >= 0) {
// both inside
*output++ = p;
oc++;
} else {
// s inside, p outside (exiting)
const GLfixed t = clipDivide(sd, sd-pd);
c->arrays.clipEye(c, buf, t, p, s);
*output++ = buf++;
oc++;
if (++sentinel >= 3)
return; // non-convex polygon!
}
} else {
if (pd >= 0) {
// s outside (entering)
if (pd) {
const GLfixed t = clipDivide(pd, pd-sd);
c->arrays.clipEye(c, buf, t, s, p);
*output++ = buf++;
oc++;
if (++sentinel >= 3)
return; // non-convex polygon!
}
*output++ = p;
oc++;
} else {
// both outside
}
}
s = p;
sd = pd;
}
// output list become the new input list
if (oc<3)
return; // less than 3 vertices left? we're done!
ivl = ovl;
ic = oc;
outi = 1-outi;
}
cc >>= 1;
plane++;
} while (cc);
}
// frustum clip-planes
if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
{
unsigned int plane = 0;
uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
do {
if (cc & 1) {
// pointers to our output list (head and current)
vertex_t** const ovl = &out[outi][0];
vertex_t** output = ovl;
unsigned int oc = 0;
unsigned int sentinel = 0;
// previous vertex, compute distance to the plane
vertex_t* s = ivl[ic-1];
GLfixed sd = frustumPlaneDist(plane, s->clip);
// clip each vertex against this plane...
for (unsigned int i=0 ; i<ic ; i++) {
vertex_t* p = ivl[i];
const GLfixed pd = frustumPlaneDist(plane, p->clip);
if (sd >= 0) {
if (pd >= 0) {
// both inside
*output++ = p;
oc++;
} else {
// s inside, p outside (exiting)
const GLfixed t = clipDivide(sd, sd-pd);
c->arrays.clipVertex(c, buf, t, p, s);
*output++ = buf++;
oc++;
if (++sentinel >= 3)
return; // non-convex polygon!
}
} else {
if (pd >= 0) {
// s outside (entering)
if (pd) {
const GLfixed t = clipDivide(pd, pd-sd);
c->arrays.clipVertex(c, buf, t, s, p);
*output++ = buf++;
oc++;
if (++sentinel >= 3)
return; // non-convex polygon!
}
*output++ = p;
oc++;
} else {
// both outside
}
}
s = p;
sd = pd;
}
// output list become the new input list
if (oc<3)
return; // less than 3 vertices left? we're done!
ivl = ovl;
ic = oc;
outi = 1-outi;
}
cc >>= 1;
plane++;
} while (cc);
}
// finally we can render our triangles...
p0 = ivl[0];
p1 = ivl[1];
for (unsigned int i=2 ; i<ic ; i++) {
p2 = ivl[i];
c->lerp.initTriangle(p0, p1, p2);
if (cull_triangle(c, p0, p1, p2)) {
p1 = p2;
continue; // culled!
}
triangle(c, p0, p1, p2);
p1 = p2;
}
}
unsigned int clip_line(ogles_context_t* c, vertex_t* s, vertex_t* p)
{
const uint32_t all_cc = (s->flags | p->flags) & vertex_t::CLIP_ALL;
if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
{
unsigned int plane = 0;
uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
do {
if (cc & 1) {
const vec4_t& equation = c->clipPlanes.plane[plane].equation;
const GLfixed sd = dot4(equation.v, s->eye.v);
const GLfixed pd = dot4(equation.v, p->eye.v);
if (sd >= 0) {
if (pd >= 0) {
// both inside
} else {
// s inside, p outside (exiting)
const GLfixed t = clipDivide(sd, sd-pd);
c->arrays.clipEye(c, p, t, p, s);
}
} else {
if (pd >= 0) {
// s outside (entering)
if (pd) {
const GLfixed t = clipDivide(pd, pd-sd);
c->arrays.clipEye(c, s, t, s, p);
}
} else {
// both outside
return 0;
}
}
}
cc >>= 1;
plane++;
} while (cc);
}
// frustum clip-planes
if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
{
unsigned int plane = 0;
uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
do {
if (cc & 1) {
const GLfixed sd = frustumPlaneDist(plane, s->clip);
const GLfixed pd = frustumPlaneDist(plane, p->clip);
if (sd >= 0) {
if (pd >= 0) {
// both inside
} else {
// s inside, p outside (exiting)
const GLfixed t = clipDivide(sd, sd-pd);
c->arrays.clipVertex(c, p, t, p, s);
}
} else {
if (pd >= 0) {
// s outside (entering)
if (pd) {
const GLfixed t = clipDivide(pd, pd-sd);
c->arrays.clipVertex(c, s, t, s, p);
}
} else {
// both outside
return 0;
}
}
}
cc >>= 1;
plane++;
} while (cc);
}
return 2;
}
}; // namespace android
|