File: HeapWalker.cpp

package info (click to toggle)
android-platform-system-core 1%3A10.0.0%2Br36-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 123,760 kB
  • sloc: cpp: 197,034; ansic: 18,211; asm: 3,606; sh: 3,180; python: 2,671; java: 693; xml: 266; makefile: 237
file content (212 lines) | stat: -rw-r--r-- 6,772 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <errno.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <unistd.h>

#include <map>
#include <utility>

#include "Allocator.h"
#include "HeapWalker.h"
#include "LeakFolding.h"
#include "ScopedSignalHandler.h"
#include "log.h"

namespace android {

bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) {
  if (end == begin) {
    end = begin + 1;
  }
  Range range{begin, end};
  if (valid_mappings_range_.end != 0 &&
      (begin < valid_mappings_range_.begin || end > valid_mappings_range_.end)) {
    MEM_LOG_ALWAYS_FATAL("allocation %p-%p is outside mapping range %p-%p",
                         reinterpret_cast<void*>(begin), reinterpret_cast<void*>(end),
                         reinterpret_cast<void*>(valid_mappings_range_.begin),
                         reinterpret_cast<void*>(valid_mappings_range_.end));
  }
  auto inserted = allocations_.insert(std::pair<Range, AllocationInfo>(range, AllocationInfo{}));
  if (inserted.second) {
    valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin);
    valid_allocations_range_.end = std::max(valid_allocations_range_.end, end);
    allocation_bytes_ += range.size();
    return true;
  } else {
    Range overlap = inserted.first->first;
    if (overlap != range) {
      MEM_ALOGE("range %p-%p overlaps with existing range %p-%p", reinterpret_cast<void*>(begin),
                reinterpret_cast<void*>(end), reinterpret_cast<void*>(overlap.begin),
                reinterpret_cast<void*>(overlap.end));
    }
    return false;
  }
}

// Sanitizers may consider certain memory inaccessible through certain pointers.
// With MTE this will need to use unchecked instructions or disable tag checking globally.
static uintptr_t ReadWordAtAddressUnsafe(uintptr_t word_ptr)
    __attribute__((no_sanitize("address", "hwaddress"))) {
  return *reinterpret_cast<uintptr_t*>(word_ptr);
}

bool HeapWalker::WordContainsAllocationPtr(uintptr_t word_ptr, Range* range, AllocationInfo** info) {
  walking_ptr_ = word_ptr;
  // This access may segfault if the process under test has done something strange,
  // for example mprotect(PROT_NONE) on a native heap page.  If so, it will be
  // caught and handled by mmaping a zero page over the faulting page.
  uintptr_t value = ReadWordAtAddressUnsafe(word_ptr);
  walking_ptr_ = 0;
  if (value >= valid_allocations_range_.begin && value < valid_allocations_range_.end) {
    AllocationMap::iterator it = allocations_.find(Range{value, value + 1});
    if (it != allocations_.end()) {
      *range = it->first;
      *info = &it->second;
      return true;
    }
  }
  return false;
}

void HeapWalker::RecurseRoot(const Range& root) {
  allocator::vector<Range> to_do(1, root, allocator_);
  while (!to_do.empty()) {
    Range range = to_do.back();
    to_do.pop_back();

    walking_range_ = range;
    ForEachPtrInRange(range, [&](Range& ref_range, AllocationInfo* ref_info) {
      if (!ref_info->referenced_from_root) {
        ref_info->referenced_from_root = true;
        to_do.push_back(ref_range);
      }
    });
    walking_range_ = Range{0, 0};
  }
}

void HeapWalker::Mapping(uintptr_t begin, uintptr_t end) {
  valid_mappings_range_.begin = std::min(valid_mappings_range_.begin, begin);
  valid_mappings_range_.end = std::max(valid_mappings_range_.end, end);
}

void HeapWalker::Root(uintptr_t begin, uintptr_t end) {
  roots_.push_back(Range{begin, end});
}

void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) {
  root_vals_.insert(root_vals_.end(), vals.begin(), vals.end());
}

size_t HeapWalker::Allocations() {
  return allocations_.size();
}

size_t HeapWalker::AllocationBytes() {
  return allocation_bytes_;
}

bool HeapWalker::DetectLeaks() {
  // Recursively walk pointers from roots to mark referenced allocations
  for (auto it = roots_.begin(); it != roots_.end(); it++) {
    RecurseRoot(*it);
  }

  Range vals;
  vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data());
  vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t);

  RecurseRoot(vals);

  if (segv_page_count_ > 0) {
    MEM_ALOGE("%zu pages skipped due to segfaults", segv_page_count_);
  }

  return true;
}

bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit, size_t* num_leaks_out,
                        size_t* leak_bytes_out) {
  leaked.clear();

  size_t num_leaks = 0;
  size_t leak_bytes = 0;
  for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
    if (!it->second.referenced_from_root) {
      num_leaks++;
      leak_bytes += it->first.end - it->first.begin;
    }
  }

  size_t n = 0;
  for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
    if (!it->second.referenced_from_root) {
      if (n++ < limit) {
        leaked.push_back(it->first);
      }
    }
  }

  if (num_leaks_out) {
    *num_leaks_out = num_leaks;
  }
  if (leak_bytes_out) {
    *leak_bytes_out = leak_bytes;
  }

  return true;
}

static bool MapOverPage(void* addr) {
  const size_t page_size = sysconf(_SC_PAGE_SIZE);
  void* page = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) & ~(page_size - 1));

  void* ret = mmap(page, page_size, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
  if (ret == MAP_FAILED) {
    MEM_ALOGE("failed to map page at %p: %s", page, strerror(errno));
    return false;
  }

  return true;
}

void HeapWalker::HandleSegFault(ScopedSignalHandler& handler, int signal, siginfo_t* si,
                                void* /*uctx*/) {
  uintptr_t addr = reinterpret_cast<uintptr_t>(si->si_addr);
  if (addr != walking_ptr_) {
    handler.reset();
    return;
  }
  if (!segv_logged_) {
    MEM_ALOGW("failed to read page at %p, signal %d", si->si_addr, signal);
    if (walking_range_.begin != 0U) {
      MEM_ALOGW("while walking range %p-%p", reinterpret_cast<void*>(walking_range_.begin),
                reinterpret_cast<void*>(walking_range_.end));
    }
    segv_logged_ = true;
  }
  segv_page_count_++;
  if (!MapOverPage(si->si_addr)) {
    handler.reset();
  }
}

Allocator<ScopedSignalHandler::SignalFnMap>::unique_ptr ScopedSignalHandler::handler_map_;

}  // namespace android