1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <unistd.h>
#include <map>
#include <utility>
#include "Allocator.h"
#include "HeapWalker.h"
#include "LeakFolding.h"
#include "ScopedSignalHandler.h"
#include "log.h"
namespace android {
bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) {
if (end == begin) {
end = begin + 1;
}
Range range{begin, end};
if (valid_mappings_range_.end != 0 &&
(begin < valid_mappings_range_.begin || end > valid_mappings_range_.end)) {
MEM_LOG_ALWAYS_FATAL("allocation %p-%p is outside mapping range %p-%p",
reinterpret_cast<void*>(begin), reinterpret_cast<void*>(end),
reinterpret_cast<void*>(valid_mappings_range_.begin),
reinterpret_cast<void*>(valid_mappings_range_.end));
}
auto inserted = allocations_.insert(std::pair<Range, AllocationInfo>(range, AllocationInfo{}));
if (inserted.second) {
valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin);
valid_allocations_range_.end = std::max(valid_allocations_range_.end, end);
allocation_bytes_ += range.size();
return true;
} else {
Range overlap = inserted.first->first;
if (overlap != range) {
MEM_ALOGE("range %p-%p overlaps with existing range %p-%p", reinterpret_cast<void*>(begin),
reinterpret_cast<void*>(end), reinterpret_cast<void*>(overlap.begin),
reinterpret_cast<void*>(overlap.end));
}
return false;
}
}
// Sanitizers may consider certain memory inaccessible through certain pointers.
// With MTE this will need to use unchecked instructions or disable tag checking globally.
static uintptr_t ReadWordAtAddressUnsafe(uintptr_t word_ptr)
__attribute__((no_sanitize("address", "hwaddress"))) {
return *reinterpret_cast<uintptr_t*>(word_ptr);
}
bool HeapWalker::WordContainsAllocationPtr(uintptr_t word_ptr, Range* range, AllocationInfo** info) {
walking_ptr_ = word_ptr;
// This access may segfault if the process under test has done something strange,
// for example mprotect(PROT_NONE) on a native heap page. If so, it will be
// caught and handled by mmaping a zero page over the faulting page.
uintptr_t value = ReadWordAtAddressUnsafe(word_ptr);
walking_ptr_ = 0;
if (value >= valid_allocations_range_.begin && value < valid_allocations_range_.end) {
AllocationMap::iterator it = allocations_.find(Range{value, value + 1});
if (it != allocations_.end()) {
*range = it->first;
*info = &it->second;
return true;
}
}
return false;
}
void HeapWalker::RecurseRoot(const Range& root) {
allocator::vector<Range> to_do(1, root, allocator_);
while (!to_do.empty()) {
Range range = to_do.back();
to_do.pop_back();
walking_range_ = range;
ForEachPtrInRange(range, [&](Range& ref_range, AllocationInfo* ref_info) {
if (!ref_info->referenced_from_root) {
ref_info->referenced_from_root = true;
to_do.push_back(ref_range);
}
});
walking_range_ = Range{0, 0};
}
}
void HeapWalker::Mapping(uintptr_t begin, uintptr_t end) {
valid_mappings_range_.begin = std::min(valid_mappings_range_.begin, begin);
valid_mappings_range_.end = std::max(valid_mappings_range_.end, end);
}
void HeapWalker::Root(uintptr_t begin, uintptr_t end) {
roots_.push_back(Range{begin, end});
}
void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) {
root_vals_.insert(root_vals_.end(), vals.begin(), vals.end());
}
size_t HeapWalker::Allocations() {
return allocations_.size();
}
size_t HeapWalker::AllocationBytes() {
return allocation_bytes_;
}
bool HeapWalker::DetectLeaks() {
// Recursively walk pointers from roots to mark referenced allocations
for (auto it = roots_.begin(); it != roots_.end(); it++) {
RecurseRoot(*it);
}
Range vals;
vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data());
vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t);
RecurseRoot(vals);
if (segv_page_count_ > 0) {
MEM_ALOGE("%zu pages skipped due to segfaults", segv_page_count_);
}
return true;
}
bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit, size_t* num_leaks_out,
size_t* leak_bytes_out) {
leaked.clear();
size_t num_leaks = 0;
size_t leak_bytes = 0;
for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
if (!it->second.referenced_from_root) {
num_leaks++;
leak_bytes += it->first.end - it->first.begin;
}
}
size_t n = 0;
for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
if (!it->second.referenced_from_root) {
if (n++ < limit) {
leaked.push_back(it->first);
}
}
}
if (num_leaks_out) {
*num_leaks_out = num_leaks;
}
if (leak_bytes_out) {
*leak_bytes_out = leak_bytes;
}
return true;
}
static bool MapOverPage(void* addr) {
const size_t page_size = sysconf(_SC_PAGE_SIZE);
void* page = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) & ~(page_size - 1));
void* ret = mmap(page, page_size, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
if (ret == MAP_FAILED) {
MEM_ALOGE("failed to map page at %p: %s", page, strerror(errno));
return false;
}
return true;
}
void HeapWalker::HandleSegFault(ScopedSignalHandler& handler, int signal, siginfo_t* si,
void* /*uctx*/) {
uintptr_t addr = reinterpret_cast<uintptr_t>(si->si_addr);
if (addr != walking_ptr_) {
handler.reset();
return;
}
if (!segv_logged_) {
MEM_ALOGW("failed to read page at %p, signal %d", si->si_addr, signal);
if (walking_range_.begin != 0U) {
MEM_ALOGW("while walking range %p-%p", reinterpret_cast<void*>(walking_range_.begin),
reinterpret_cast<void*>(walking_range_.end));
}
segv_logged_ = true;
}
segv_page_count_++;
if (!MapOverPage(si->si_addr)) {
handler.reset();
}
}
Allocator<ScopedSignalHandler::SignalFnMap>::unique_ptr ScopedSignalHandler::handler_map_;
} // namespace android
|