1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <vector>
#include <android-base/file.h>
#include <gtest/gtest.h>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
#include "ElfTestUtils.h"
#include "MemoryFake.h"
namespace unwindstack {
class MapInfoCreateMemoryTest : public ::testing::Test {
protected:
template <typename Ehdr, typename Shdr>
static void InitElf(int fd, uint64_t file_offset, uint64_t sh_offset, uint8_t class_type) {
std::vector<uint8_t> buffer(20000);
memset(buffer.data(), 0, buffer.size());
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
memcpy(ehdr.e_ident, ELFMAG, SELFMAG);
ehdr.e_ident[EI_CLASS] = class_type;
ehdr.e_shoff = sh_offset;
ehdr.e_shentsize = sizeof(Shdr) + 100;
ehdr.e_shnum = 4;
memcpy(&buffer[file_offset], &ehdr, sizeof(ehdr));
ASSERT_TRUE(android::base::WriteFully(fd, buffer.data(), buffer.size()));
}
static void SetUpTestCase() {
std::vector<uint8_t> buffer(12288, 0);
memcpy(buffer.data(), ELFMAG, SELFMAG);
buffer[EI_CLASS] = ELFCLASS32;
ASSERT_TRUE(android::base::WriteFully(elf_.fd, buffer.data(), 1024));
memset(buffer.data(), 0, buffer.size());
memcpy(&buffer[0x1000], ELFMAG, SELFMAG);
buffer[0x1000 + EI_CLASS] = ELFCLASS64;
buffer[0x2000] = 0xff;
ASSERT_TRUE(android::base::WriteFully(elf_at_1000_.fd, buffer.data(), buffer.size()));
InitElf<Elf32_Ehdr, Elf32_Shdr>(elf32_at_map_.fd, 0x1000, 0x2000, ELFCLASS32);
InitElf<Elf64_Ehdr, Elf64_Shdr>(elf64_at_map_.fd, 0x2000, 0x3000, ELFCLASS64);
}
void SetUp() override {
memory_ = new MemoryFake;
process_memory_.reset(memory_);
}
MemoryFake* memory_;
std::shared_ptr<Memory> process_memory_;
static TemporaryFile elf_;
static TemporaryFile elf_at_1000_;
static TemporaryFile elf32_at_map_;
static TemporaryFile elf64_at_map_;
};
TemporaryFile MapInfoCreateMemoryTest::elf_;
TemporaryFile MapInfoCreateMemoryTest::elf_at_1000_;
TemporaryFile MapInfoCreateMemoryTest::elf32_at_map_;
TemporaryFile MapInfoCreateMemoryTest::elf64_at_map_;
TEST_F(MapInfoCreateMemoryTest, end_le_start) {
MapInfo info(nullptr, 0x100, 0x100, 0, 0, elf_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() == nullptr);
info.end = 0xff;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() == nullptr);
// Make sure this test is valid.
info.end = 0x101;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
}
// Verify that if the offset is non-zero but there is no elf at the offset,
// that the full file is used.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_full_file) {
MapInfo info(nullptr, 0x100, 0x200, 0x100, 0, elf_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0x100U, info.elf_offset);
EXPECT_EQ(0x100U, info.elf_start_offset);
// Read the entire file.
std::vector<uint8_t> buffer(1024);
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 1024));
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
ASSERT_EQ(ELFCLASS32, buffer[EI_CLASS]);
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->ReadFully(1024, buffer.data(), 1));
// Now verify the elf start offset is set correctly based on the previous
// info.
MapInfo prev_info(nullptr, 0, 0x100, 0x10, 0, "");
info.prev_map = &prev_info;
// No preconditions met, change each one until it should set the elf start
// offset to zero.
info.elf_offset = 0;
info.elf_start_offset = 0;
info.memory_backed_elf = false;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0x100U, info.elf_offset);
EXPECT_EQ(0x100U, info.elf_start_offset);
prev_info.offset = 0;
info.elf_offset = 0;
info.elf_start_offset = 0;
info.memory_backed_elf = false;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0x100U, info.elf_offset);
EXPECT_EQ(0x100U, info.elf_start_offset);
prev_info.flags = PROT_READ;
info.elf_offset = 0;
info.elf_start_offset = 0;
info.memory_backed_elf = false;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0x100U, info.elf_offset);
EXPECT_EQ(0x100U, info.elf_start_offset);
prev_info.name = info.name;
info.elf_offset = 0;
info.elf_start_offset = 0;
info.memory_backed_elf = false;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0x100U, info.elf_offset);
EXPECT_EQ(0U, info.elf_start_offset);
}
// Verify that if the offset is non-zero and there is an elf at that
// offset, that only part of the file is used.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file) {
MapInfo info(nullptr, 0x100, 0x200, 0x1000, 0, elf_at_1000_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0U, info.elf_offset);
EXPECT_EQ(0x1000U, info.elf_start_offset);
// Read the valid part of the file.
std::vector<uint8_t> buffer(0x100);
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 0x100));
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
ASSERT_EQ(ELFCLASS64, buffer[EI_CLASS]);
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->ReadFully(0x100, buffer.data(), 1));
}
// Verify that if the offset is non-zero and there is an elf at that
// offset, that only part of the file is used. Further verify that if the
// embedded elf is bigger than the initial map, the new object is larger
// than the original map size. Do this for a 32 bit elf and a 64 bit elf.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf32) {
MapInfo info(nullptr, 0x5000, 0x6000, 0x1000, 0, elf32_at_map_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0U, info.elf_offset);
EXPECT_EQ(0x1000U, info.elf_start_offset);
// Verify the memory is a valid elf.
uint8_t e_ident[SELFMAG + 1];
ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG));
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
// Read past the end of what would normally be the size of the map.
ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1));
}
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf64) {
MapInfo info(nullptr, 0x7000, 0x8000, 0x2000, 0, elf64_at_map_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(info.memory_backed_elf);
ASSERT_EQ(0U, info.elf_offset);
EXPECT_EQ(0x2000U, info.elf_start_offset);
// Verify the memory is a valid elf.
uint8_t e_ident[SELFMAG + 1];
ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG));
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
// Read past the end of what would normally be the size of the map.
ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1));
}
// Verify that device file names will never result in Memory object creation.
TEST_F(MapInfoCreateMemoryTest, check_device_maps) {
// Set up some memory so that a valid local memory object would
// be returned if the file mapping fails, but the device check is incorrect.
std::vector<uint8_t> buffer(1024);
uint64_t start = reinterpret_cast<uint64_t>(buffer.data());
MapInfo info(nullptr, start, start + buffer.size(), 0, 0x8000, "/dev/something");
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() == nullptr);
}
TEST_F(MapInfoCreateMemoryTest, process_memory) {
MapInfo info(nullptr, 0x2000, 0x3000, 0, PROT_READ, "");
Elf32_Ehdr ehdr = {};
TestInitEhdr<Elf32_Ehdr>(&ehdr, ELFCLASS32, EM_ARM);
std::vector<uint8_t> buffer(1024);
memcpy(buffer.data(), &ehdr, sizeof(ehdr));
// Verify that the the process_memory object is used, so seed it
// with memory.
for (size_t i = sizeof(ehdr); i < buffer.size(); i++) {
buffer[i] = i % 256;
}
memory_->SetMemory(info.start, buffer.data(), buffer.size());
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_TRUE(info.memory_backed_elf);
memset(buffer.data(), 0, buffer.size());
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), buffer.size()));
ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr)));
for (size_t i = sizeof(ehdr); i < buffer.size(); i++) {
ASSERT_EQ(i % 256, buffer[i]) << "Failed at byte " << i;
}
// Try to read outside of the map size.
ASSERT_FALSE(memory->ReadFully(buffer.size(), buffer.data(), 1));
}
TEST_F(MapInfoCreateMemoryTest, valid_rosegment_zero_offset) {
Maps maps;
maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0);
maps.Add(0x1000, 0x2600, 0, PROT_READ, "/only/in/memory.so", 0);
maps.Add(0x3000, 0x5000, 0x4000, PROT_READ | PROT_EXEC, "/only/in/memory.so", 0);
Elf32_Ehdr ehdr = {};
TestInitEhdr<Elf32_Ehdr>(&ehdr, ELFCLASS32, EM_ARM);
memory_->SetMemory(0x1000, &ehdr, sizeof(ehdr));
memory_->SetMemoryBlock(0x1000 + sizeof(ehdr), 0x1600 - sizeof(ehdr), 0xab);
// Set the memory in the r-x map.
memory_->SetMemoryBlock(0x3000, 0x2000, 0x5d);
MapInfo* map_info = maps.Find(0x3000);
ASSERT_TRUE(map_info != nullptr);
std::unique_ptr<Memory> mem(map_info->CreateMemory(process_memory_));
ASSERT_TRUE(mem.get() != nullptr);
EXPECT_TRUE(map_info->memory_backed_elf);
EXPECT_EQ(0x4000UL, map_info->elf_offset);
EXPECT_EQ(0x4000UL, map_info->offset);
EXPECT_EQ(0U, map_info->elf_start_offset);
// Verify that reading values from this memory works properly.
std::vector<uint8_t> buffer(0x4000);
size_t bytes = mem->Read(0, buffer.data(), buffer.size());
ASSERT_EQ(0x1600UL, bytes);
ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr)));
for (size_t i = sizeof(ehdr); i < bytes; i++) {
ASSERT_EQ(0xab, buffer[i]) << "Failed at byte " << i;
}
bytes = mem->Read(0x4000, buffer.data(), buffer.size());
ASSERT_EQ(0x2000UL, bytes);
for (size_t i = 0; i < bytes; i++) {
ASSERT_EQ(0x5d, buffer[i]) << "Failed at byte " << i;
}
}
TEST_F(MapInfoCreateMemoryTest, valid_rosegment_non_zero_offset) {
Maps maps;
maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0);
maps.Add(0x1000, 0x2000, 0, PROT_READ, "/only/in/memory.apk", 0);
maps.Add(0x2000, 0x3000, 0x1000, PROT_READ | PROT_EXEC, "/only/in/memory.apk", 0);
maps.Add(0x3000, 0x4000, 0xa000, PROT_READ, "/only/in/memory.apk", 0);
maps.Add(0x4000, 0x5000, 0xb000, PROT_READ | PROT_EXEC, "/only/in/memory.apk", 0);
Elf32_Ehdr ehdr = {};
TestInitEhdr<Elf32_Ehdr>(&ehdr, ELFCLASS32, EM_ARM);
// Setup an elf at offset 0x1000 in memory.
memory_->SetMemory(0x1000, &ehdr, sizeof(ehdr));
memory_->SetMemoryBlock(0x1000 + sizeof(ehdr), 0x2000 - sizeof(ehdr), 0x12);
memory_->SetMemoryBlock(0x2000, 0x1000, 0x23);
// Setup an elf at offset 0x3000 in memory..
memory_->SetMemory(0x3000, &ehdr, sizeof(ehdr));
memory_->SetMemoryBlock(0x3000 + sizeof(ehdr), 0x4000 - sizeof(ehdr), 0x34);
memory_->SetMemoryBlock(0x4000, 0x1000, 0x43);
MapInfo* map_info = maps.Find(0x4000);
ASSERT_TRUE(map_info != nullptr);
std::unique_ptr<Memory> mem(map_info->CreateMemory(process_memory_));
ASSERT_TRUE(mem.get() != nullptr);
EXPECT_TRUE(map_info->memory_backed_elf);
EXPECT_EQ(0x1000UL, map_info->elf_offset);
EXPECT_EQ(0xb000UL, map_info->offset);
EXPECT_EQ(0xa000UL, map_info->elf_start_offset);
// Verify that reading values from this memory works properly.
std::vector<uint8_t> buffer(0x4000);
size_t bytes = mem->Read(0, buffer.data(), buffer.size());
ASSERT_EQ(0x1000UL, bytes);
ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr)));
for (size_t i = sizeof(ehdr); i < bytes; i++) {
ASSERT_EQ(0x34, buffer[i]) << "Failed at byte " << i;
}
bytes = mem->Read(0x1000, buffer.data(), buffer.size());
ASSERT_EQ(0x1000UL, bytes);
for (size_t i = 0; i < bytes; i++) {
ASSERT_EQ(0x43, buffer[i]) << "Failed at byte " << i;
}
}
TEST_F(MapInfoCreateMemoryTest, rosegment_from_file) {
Maps maps;
maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0);
maps.Add(0x1000, 0x2000, 0x1000, PROT_READ, elf_at_1000_.path, 0);
maps.Add(0x2000, 0x3000, 0x2000, PROT_READ | PROT_EXEC, elf_at_1000_.path, 0);
MapInfo* map_info = maps.Find(0x2000);
ASSERT_TRUE(map_info != nullptr);
// Set up the size
Elf64_Ehdr ehdr;
ASSERT_EQ(0x1000, lseek(elf_at_1000_.fd, 0x1000, SEEK_SET));
ASSERT_TRUE(android::base::ReadFully(elf_at_1000_.fd, &ehdr, sizeof(ehdr)));
// Will not give the elf memory, because the read-only entry does not
// extend over the executable segment.
std::unique_ptr<Memory> memory(map_info->CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
EXPECT_FALSE(map_info->memory_backed_elf);
std::vector<uint8_t> buffer(0x100);
EXPECT_EQ(0x2000U, map_info->offset);
EXPECT_EQ(0U, map_info->elf_offset);
EXPECT_EQ(0U, map_info->elf_start_offset);
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 0x100));
EXPECT_EQ(0xffU, buffer[0]);
// Now init the elf data enough so that the file memory object will be used.
ehdr.e_shoff = 0x4000;
ehdr.e_shnum = 1;
ehdr.e_shentsize = 0x100;
ASSERT_EQ(0x1000, lseek(elf_at_1000_.fd, 0x1000, SEEK_SET));
ASSERT_TRUE(android::base::WriteFully(elf_at_1000_.fd, &ehdr, sizeof(ehdr)));
map_info->memory_backed_elf = false;
memory.reset(map_info->CreateMemory(process_memory_));
EXPECT_FALSE(map_info->memory_backed_elf);
EXPECT_EQ(0x2000U, map_info->offset);
EXPECT_EQ(0x1000U, map_info->elf_offset);
EXPECT_EQ(0x1000U, map_info->elf_start_offset);
Elf64_Ehdr ehdr_mem;
ASSERT_TRUE(memory->ReadFully(0, &ehdr_mem, sizeof(ehdr_mem)));
EXPECT_TRUE(memcmp(&ehdr, &ehdr_mem, sizeof(ehdr)) == 0);
}
} // namespace unwindstack
|