1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "averaged_statistics_collector.h"
#include <base/bind.h>
#include <base/files/file_util.h>
#include <base/files/file_path.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/string_split.h>
#include "metrics_collector.h"
namespace {
// disk stats metrics
// The {Read,Write}Sectors numbers are in sectors/second.
// A sector is usually 512 bytes.
const char kReadSectorsHistogramName[] = "Platform.ReadSectors";
const char kWriteSectorsHistogramName[] = "Platform.WriteSectors";
const int kDiskMetricsStatItemCount = 11;
// Assume a max rate of 250Mb/s for reads (worse for writes) and 512 byte
// sectors.
const int kSectorsIOMax = 500000; // sectors/second
const int kSectorsBuckets = 50; // buckets
// Page size is 4k, sector size is 0.5k. We're not interested in page fault
// rates that the disk cannot sustain.
const int kPageFaultsMax = kSectorsIOMax / 8; // Page faults/second
const int kPageFaultsBuckets = 50;
// Major page faults, i.e. the ones that require data to be read from disk.
const char kPageFaultsHistogramName[] = "Platform.PageFaults";
// Swap in and Swap out
const char kSwapInHistogramName[] = "Platform.SwapIn";
const char kSwapOutHistogramName[] = "Platform.SwapOut";
const int kIntervalBetweenCollection = 60; // seconds
const int kCollectionDuration = 1; // seconds
} // namespace
AveragedStatisticsCollector::AveragedStatisticsCollector(
MetricsLibraryInterface* metrics_library,
const std::string& diskstats_path,
const std::string& vmstats_path) :
metrics_lib_(metrics_library),
diskstats_path_(diskstats_path),
vmstats_path_(vmstats_path) {
}
void AveragedStatisticsCollector::ScheduleWait() {
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&AveragedStatisticsCollector::WaitCallback,
base::Unretained(this)),
base::TimeDelta::FromSeconds(
kIntervalBetweenCollection - kCollectionDuration));
}
void AveragedStatisticsCollector::ScheduleCollect() {
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&AveragedStatisticsCollector::CollectCallback,
base::Unretained(this)),
base::TimeDelta::FromSeconds(kCollectionDuration));
}
void AveragedStatisticsCollector::WaitCallback() {
ReadInitialValues();
ScheduleCollect();
}
void AveragedStatisticsCollector::CollectCallback() {
Collect();
ScheduleWait();
}
void AveragedStatisticsCollector::ReadInitialValues() {
stats_start_time_ = MetricsCollector::GetActiveTime();
DiskStatsReadStats(&read_sectors_, &write_sectors_);
VmStatsReadStats(&vmstats_);
}
bool AveragedStatisticsCollector::DiskStatsReadStats(
uint64_t* read_sectors, uint64_t* write_sectors) {
CHECK(read_sectors);
CHECK(write_sectors);
std::string line;
if (diskstats_path_.empty()) {
return false;
}
if (!base::ReadFileToString(base::FilePath(diskstats_path_), &line)) {
PLOG(WARNING) << "Could not read disk stats from "
<< diskstats_path_.value();
return false;
}
std::vector<std::string> parts = base::SplitString(
line, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (parts.size() != kDiskMetricsStatItemCount) {
LOG(ERROR) << "Could not parse disk stat correctly. Expected "
<< kDiskMetricsStatItemCount << " elements but got "
<< parts.size();
return false;
}
if (!base::StringToUint64(parts[2], read_sectors)) {
LOG(ERROR) << "Couldn't convert read sectors " << parts[2] << " to uint64";
return false;
}
if (!base::StringToUint64(parts[6], write_sectors)) {
LOG(ERROR) << "Couldn't convert write sectors " << parts[6] << " to uint64";
return false;
}
return true;
}
bool AveragedStatisticsCollector::VmStatsParseStats(
const char* stats, struct VmstatRecord* record) {
CHECK(stats);
CHECK(record);
base::StringPairs pairs;
base::SplitStringIntoKeyValuePairs(stats, ' ', '\n', &pairs);
for (base::StringPairs::iterator it = pairs.begin();
it != pairs.end(); ++it) {
if (it->first == "pgmajfault" &&
!base::StringToUint64(it->second, &record->page_faults)) {
return false;
}
if (it->first == "pswpin" &&
!base::StringToUint64(it->second, &record->swap_in)) {
return false;
}
if (it->first == "pswpout" &&
!base::StringToUint64(it->second, &record->swap_out)) {
return false;
}
}
return true;
}
bool AveragedStatisticsCollector::VmStatsReadStats(struct VmstatRecord* stats) {
CHECK(stats);
std::string value_string;
if (!base::ReadFileToString(vmstats_path_, &value_string)) {
LOG(WARNING) << "cannot read " << vmstats_path_.value();
return false;
}
return VmStatsParseStats(value_string.c_str(), stats);
}
void AveragedStatisticsCollector::Collect() {
uint64_t read_sectors_now, write_sectors_now;
struct VmstatRecord vmstats_now;
double time_now = MetricsCollector::GetActiveTime();
double delta_time = time_now - stats_start_time_;
bool diskstats_success = DiskStatsReadStats(&read_sectors_now,
&write_sectors_now);
int delta_read = read_sectors_now - read_sectors_;
int delta_write = write_sectors_now - write_sectors_;
int read_sectors_per_second = delta_read / delta_time;
int write_sectors_per_second = delta_write / delta_time;
bool vmstats_success = VmStatsReadStats(&vmstats_now);
uint64_t delta_faults = vmstats_now.page_faults - vmstats_.page_faults;
uint64_t delta_swap_in = vmstats_now.swap_in - vmstats_.swap_in;
uint64_t delta_swap_out = vmstats_now.swap_out - vmstats_.swap_out;
uint64_t page_faults_per_second = delta_faults / delta_time;
uint64_t swap_in_per_second = delta_swap_in / delta_time;
uint64_t swap_out_per_second = delta_swap_out / delta_time;
if (diskstats_success) {
metrics_lib_->SendToUMA(kReadSectorsHistogramName,
read_sectors_per_second,
1,
kSectorsIOMax,
kSectorsBuckets);
metrics_lib_->SendToUMA(kWriteSectorsHistogramName,
write_sectors_per_second,
1,
kSectorsIOMax,
kSectorsBuckets);
}
if (vmstats_success) {
metrics_lib_->SendToUMA(kPageFaultsHistogramName,
page_faults_per_second,
1,
kPageFaultsMax,
kPageFaultsBuckets);
metrics_lib_->SendToUMA(kSwapInHistogramName,
swap_in_per_second,
1,
kPageFaultsMax,
kPageFaultsBuckets);
metrics_lib_->SendToUMA(kSwapOutHistogramName,
swap_out_per_second,
1,
kPageFaultsMax,
kPageFaultsBuckets);
}
}
|