1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/* libs/pixelflinger/fixed.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdio.h>
#include <private/pixelflinger/ggl_context.h>
#include <private/pixelflinger/ggl_fixed.h>
// ------------------------------------------------------------------------
int32_t gglRecipQNormalized(int32_t x, int* exponent)
{
const int32_t s = x>>31;
uint32_t a = s ? -x : x;
// the result will overflow, so just set it to the biggest/inf value
if (ggl_unlikely(a <= 2LU)) {
*exponent = 0;
return s ? FIXED_MIN : FIXED_MAX;
}
// Newton-Raphson iteration:
// x = r*(2 - a*r)
const int32_t lz = gglClz(a);
a <<= lz; // 0.32
uint32_t r = a;
// note: if a == 0x80000000, this means x was a power-of-2, in this
// case we don't need to compute anything. We get the reciprocal for
// (almost) free.
if (a != 0x80000000) {
r = (0x2E800 << (30-16)) - (r>>(2-1)); // 2.30, r = 2.90625 - 2*a
// 0.32 + 2.30 = 2.62 -> 2.30
// 2.30 + 2.30 = 4.60 -> 2.30
r = (((2LU<<30) - uint32_t((uint64_t(a)*r) >> 32)) * uint64_t(r)) >> 30;
r = (((2LU<<30) - uint32_t((uint64_t(a)*r) >> 32)) * uint64_t(r)) >> 30;
}
// shift right 1-bit to make room for the sign bit
*exponent = 30-lz-1;
r >>= 1;
return s ? -r : r;
}
int32_t gglRecipQ(GGLfixed x, int q)
{
int shift;
x = gglRecipQNormalized(x, &shift);
shift += 16-q;
if (shift > 0)
x += 1L << (shift-1); // rounding
x >>= shift;
return x;
}
// ------------------------------------------------------------------------
GGLfixed gglFastDivx(GGLfixed n, GGLfixed d)
{
if ((d>>24) && ((d>>24)+1)) {
n >>= 8;
d >>= 8;
}
return gglMulx(n, gglRecip(d));
}
// ------------------------------------------------------------------------
static const GGLfixed ggl_sqrt_reciproc_approx_tab[8] = {
// 1/sqrt(x) with x = 1-N/16, N=[8...1]
0x16A09, 0x15555, 0x143D1, 0x134BF, 0x1279A, 0x11C01, 0x111AC, 0x10865
};
GGLfixed gglSqrtRecipx(GGLfixed x)
{
if (x == 0) return FIXED_MAX;
if (x == FIXED_ONE) return x;
const GGLfixed a = x;
const int32_t lz = gglClz(x);
x = ggl_sqrt_reciproc_approx_tab[(a>>(28-lz))&0x7];
const int32_t exp = lz - 16;
if (exp <= 0) x >>= -exp>>1;
else x <<= (exp>>1) + (exp & 1);
if (exp & 1) {
x = gglMulx(x, ggl_sqrt_reciproc_approx_tab[0])>>1;
}
// 2 Newton-Raphson iterations: x = x/2*(3-(a*x)*x)
x = gglMulx((x>>1),(0x30000 - gglMulx(gglMulx(a,x),x)));
x = gglMulx((x>>1),(0x30000 - gglMulx(gglMulx(a,x),x)));
return x;
}
GGLfixed gglSqrtx(GGLfixed a)
{
// Compute a full precision square-root (24 bits accuracy)
GGLfixed r = 0;
GGLfixed bit = 0x800000;
int32_t bshift = 15;
do {
GGLfixed temp = bit + (r<<1);
if (bshift >= 8) temp <<= (bshift-8);
else temp >>= (8-bshift);
if (a >= temp) {
r += bit;
a -= temp;
}
bshift--;
} while (bit>>=1);
return r;
}
// ------------------------------------------------------------------------
static const GGLfixed ggl_log_approx_tab[] = {
// -ln(x)/ln(2) with x = N/16, N=[8...16]
0xFFFF, 0xd47f, 0xad96, 0x8a62, 0x6a3f, 0x4caf, 0x3151, 0x17d6, 0x0000
};
static const GGLfixed ggl_alog_approx_tab[] = { // domain [0 - 1.0]
0xffff, 0xeac0, 0xd744, 0xc567, 0xb504, 0xa5fe, 0x9837, 0x8b95, 0x8000
};
GGLfixed gglPowx(GGLfixed x, GGLfixed y)
{
// prerequisite: 0 <= x <= 1, and y >=0
// pow(x,y) = 2^(y*log2(x))
// = 2^(y*log2(x*(2^exp)*(2^-exp))))
// = 2^(y*(log2(X)-exp))
// = 2^(log2(X)*y - y*exp)
// = 2^( - (-log2(X)*y + y*exp) )
int32_t exp = gglClz(x) - 16;
GGLfixed f = x << exp;
x = (f & 0x0FFF)<<4;
f = (f >> 12) & 0x7;
GGLfixed p = gglMulAddx(
ggl_log_approx_tab[f+1] - ggl_log_approx_tab[f], x,
ggl_log_approx_tab[f]);
p = gglMulAddx(p, y, y*exp);
exp = gglFixedToIntFloor(p);
if (exp < 31) {
p = gglFracx(p);
x = (p & 0x1FFF)<<3;
p >>= 13;
p = gglMulAddx(
ggl_alog_approx_tab[p+1] - ggl_alog_approx_tab[p], x,
ggl_alog_approx_tab[p]);
p >>= exp;
} else {
p = 0;
}
return p;
// ( powf((a*65536.0f), (b*65536.0f)) ) * 65536.0f;
}
// ------------------------------------------------------------------------
int32_t gglDivQ(GGLfixed n, GGLfixed d, int32_t i)
{
//int32_t r =int32_t((int64_t(n)<<i)/d);
const int32_t ds = n^d;
if (n<0) n = -n;
if (d<0) d = -d;
int nd = gglClz(d) - gglClz(n);
i += nd + 1;
if (nd > 0) d <<= nd;
else n <<= -nd;
uint32_t q = 0;
int j = i & 7;
i >>= 3;
// gcc deals with the code below pretty well.
// we get 3.75 cycles per bit in the main loop
// and 8 cycles per bit in the termination loop
if (ggl_likely(i)) {
n -= d;
do {
q <<= 8;
if (n>=0) q |= 128;
else n += d;
n = n*2 - d;
if (n>=0) q |= 64;
else n += d;
n = n*2 - d;
if (n>=0) q |= 32;
else n += d;
n = n*2 - d;
if (n>=0) q |= 16;
else n += d;
n = n*2 - d;
if (n>=0) q |= 8;
else n += d;
n = n*2 - d;
if (n>=0) q |= 4;
else n += d;
n = n*2 - d;
if (n>=0) q |= 2;
else n += d;
n = n*2 - d;
if (n>=0) q |= 1;
else n += d;
if (--i == 0)
goto finish;
n = n*2 - d;
} while(true);
do {
q <<= 1;
n = n*2 - d;
if (n>=0) q |= 1;
else n += d;
finish: ;
} while (j--);
return (ds<0) ? -q : q;
}
n -= d;
if (n>=0) q |= 1;
else n += d;
j--;
goto finish;
}
// ------------------------------------------------------------------------
// assumes that the int32_t values of a, b, and c are all positive
// use when both a and b are larger than c
template <typename T>
static inline void swap(T& a, T& b) {
T t(a);
a = b;
b = t;
}
static __attribute__((noinline))
int32_t slow_muldiv(uint32_t a, uint32_t b, uint32_t c)
{
// first we compute a*b as a 64-bit integer
// (GCC generates umull with the code below)
uint64_t ab = uint64_t(a)*b;
uint32_t hi = ab>>32;
uint32_t lo = ab;
uint32_t result;
// now perform the division
if (hi >= c) {
overflow:
result = 0x7fffffff; // basic overflow
} else if (hi == 0) {
result = lo/c; // note: c can't be 0
if ((result >> 31) != 0) // result must fit in 31 bits
goto overflow;
} else {
uint32_t r = hi;
int bits = 31;
result = 0;
do {
r = (r << 1) | (lo >> 31);
lo <<= 1;
result <<= 1;
if (r >= c) {
r -= c;
result |= 1;
}
} while (bits--);
}
return int32_t(result);
}
// assumes a >= 0 and c >= b >= 0
static inline
int32_t quick_muldiv(int32_t a, int32_t b, int32_t c)
{
int32_t r = 0, q = 0, i;
int leading = gglClz(a);
i = 32 - leading;
a <<= leading;
do {
r <<= 1;
if (a < 0)
r += b;
a <<= 1;
q <<= 1;
if (r >= c) {
r -= c;
q++;
}
asm(""::); // gcc generates better code this way
if (r >= c) {
r -= c;
q++;
}
}
while (--i);
return q;
}
// this function computes a*b/c with 64-bit intermediate accuracy
// overflows (e.g. division by 0) are handled and return INT_MAX
int32_t gglMulDivi(int32_t a, int32_t b, int32_t c)
{
int32_t result;
int32_t sign = a^b^c;
if (a < 0) a = -a;
if (b < 0) b = -b;
if (c < 0) c = -c;
if (a < b) {
swap(a, b);
}
if (b <= c) result = quick_muldiv(a, b, c);
else result = slow_muldiv((uint32_t)a, (uint32_t)b, (uint32_t)c);
if (sign < 0)
result = -result;
return result;
}
|