1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Vector"
#include <utils/VectorImpl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <log/log.h>
#include <safe_iop.h>
#include "SharedBuffer.h"
/*****************************************************************************/
namespace android {
// ----------------------------------------------------------------------------
const size_t kMinVectorCapacity = 4;
static inline size_t max(size_t a, size_t b) {
return a>b ? a : b;
}
// ----------------------------------------------------------------------------
VectorImpl::VectorImpl(size_t itemSize, uint32_t flags)
: mStorage(0), mCount(0), mFlags(flags), mItemSize(itemSize)
{
}
VectorImpl::VectorImpl(const VectorImpl& rhs)
: mStorage(rhs.mStorage), mCount(rhs.mCount),
mFlags(rhs.mFlags), mItemSize(rhs.mItemSize)
{
if (mStorage) {
SharedBuffer::bufferFromData(mStorage)->acquire();
}
}
VectorImpl::~VectorImpl()
{
ALOGW_IF(mCount,
"[%p] subclasses of VectorImpl must call finish_vector()"
" in their destructor. Leaking %d bytes.",
this, (int)(mCount*mItemSize));
// We can't call _do_destroy() here because the vtable is already gone.
}
VectorImpl& VectorImpl::operator = (const VectorImpl& rhs)
{
LOG_ALWAYS_FATAL_IF(mItemSize != rhs.mItemSize,
"Vector<> have different types (this=%p, rhs=%p)", this, &rhs);
if (this != &rhs) {
release_storage();
if (rhs.mCount) {
mStorage = rhs.mStorage;
mCount = rhs.mCount;
SharedBuffer::bufferFromData(mStorage)->acquire();
} else {
mStorage = 0;
mCount = 0;
}
}
return *this;
}
void* VectorImpl::editArrayImpl()
{
if (mStorage) {
const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage);
SharedBuffer* editable = sb->attemptEdit();
if (editable == 0) {
// If we're here, we're not the only owner of the buffer.
// We must make a copy of it.
editable = SharedBuffer::alloc(sb->size());
// Fail instead of returning a pointer to storage that's not
// editable. Otherwise we'd be editing the contents of a buffer
// for which we're not the only owner, which is undefined behaviour.
LOG_ALWAYS_FATAL_IF(editable == NULL);
_do_copy(editable->data(), mStorage, mCount);
release_storage();
mStorage = editable->data();
}
}
return mStorage;
}
size_t VectorImpl::capacity() const
{
if (mStorage) {
return SharedBuffer::bufferFromData(mStorage)->size() / mItemSize;
}
return 0;
}
ssize_t VectorImpl::insertVectorAt(const VectorImpl& vector, size_t index)
{
return insertArrayAt(vector.arrayImpl(), index, vector.size());
}
ssize_t VectorImpl::appendVector(const VectorImpl& vector)
{
return insertVectorAt(vector, size());
}
ssize_t VectorImpl::insertArrayAt(const void* array, size_t index, size_t length)
{
if (index > size())
return BAD_INDEX;
void* where = _grow(index, length);
if (where) {
_do_copy(where, array, length);
}
return where ? index : (ssize_t)NO_MEMORY;
}
ssize_t VectorImpl::appendArray(const void* array, size_t length)
{
return insertArrayAt(array, size(), length);
}
ssize_t VectorImpl::insertAt(size_t index, size_t numItems)
{
return insertAt(0, index, numItems);
}
ssize_t VectorImpl::insertAt(const void* item, size_t index, size_t numItems)
{
if (index > size())
return BAD_INDEX;
void* where = _grow(index, numItems);
if (where) {
if (item) {
_do_splat(where, item, numItems);
} else {
_do_construct(where, numItems);
}
}
return where ? index : (ssize_t)NO_MEMORY;
}
static int sortProxy(const void* lhs, const void* rhs, void* func)
{
return (*(VectorImpl::compar_t)func)(lhs, rhs);
}
status_t VectorImpl::sort(VectorImpl::compar_t cmp)
{
return sort(sortProxy, (void*)cmp);
}
status_t VectorImpl::sort(VectorImpl::compar_r_t cmp, void* state)
{
// the sort must be stable. we're using insertion sort which
// is well suited for small and already sorted arrays
// for big arrays, it could be better to use mergesort
const ssize_t count = size();
if (count > 1) {
void* array = const_cast<void*>(arrayImpl());
void* temp = 0;
ssize_t i = 1;
while (i < count) {
void* item = reinterpret_cast<char*>(array) + mItemSize*(i);
void* curr = reinterpret_cast<char*>(array) + mItemSize*(i-1);
if (cmp(curr, item, state) > 0) {
if (!temp) {
// we're going to have to modify the array...
array = editArrayImpl();
if (!array) return NO_MEMORY;
temp = malloc(mItemSize);
if (!temp) return NO_MEMORY;
item = reinterpret_cast<char*>(array) + mItemSize*(i);
curr = reinterpret_cast<char*>(array) + mItemSize*(i-1);
} else {
_do_destroy(temp, 1);
}
_do_copy(temp, item, 1);
ssize_t j = i-1;
void* next = reinterpret_cast<char*>(array) + mItemSize*(i);
do {
_do_destroy(next, 1);
_do_copy(next, curr, 1);
next = curr;
--j;
curr = NULL;
if (j >= 0) {
curr = reinterpret_cast<char*>(array) + mItemSize*(j);
}
} while (j>=0 && (cmp(curr, temp, state) > 0));
_do_destroy(next, 1);
_do_copy(next, temp, 1);
}
i++;
}
if (temp) {
_do_destroy(temp, 1);
free(temp);
}
}
return NO_ERROR;
}
void VectorImpl::pop()
{
if (size())
removeItemsAt(size()-1, 1);
}
void VectorImpl::push()
{
push(0);
}
void VectorImpl::push(const void* item)
{
insertAt(item, size());
}
ssize_t VectorImpl::add()
{
return add(0);
}
ssize_t VectorImpl::add(const void* item)
{
return insertAt(item, size());
}
ssize_t VectorImpl::replaceAt(size_t index)
{
return replaceAt(0, index);
}
ssize_t VectorImpl::replaceAt(const void* prototype, size_t index)
{
ALOG_ASSERT(index<size(),
"[%p] replace: index=%d, size=%d", this, (int)index, (int)size());
if (index >= size()) {
return BAD_INDEX;
}
void* item = editItemLocation(index);
if (item != prototype) {
if (item == 0)
return NO_MEMORY;
_do_destroy(item, 1);
if (prototype == 0) {
_do_construct(item, 1);
} else {
_do_copy(item, prototype, 1);
}
}
return ssize_t(index);
}
ssize_t VectorImpl::removeItemsAt(size_t index, size_t count)
{
ALOG_ASSERT((index+count)<=size(),
"[%p] remove: index=%d, count=%d, size=%d",
this, (int)index, (int)count, (int)size());
if ((index+count) > size())
return BAD_VALUE;
_shrink(index, count);
return index;
}
void VectorImpl::finish_vector()
{
release_storage();
mStorage = 0;
mCount = 0;
}
void VectorImpl::clear()
{
_shrink(0, mCount);
}
void* VectorImpl::editItemLocation(size_t index)
{
ALOG_ASSERT(index<capacity(),
"[%p] editItemLocation: index=%d, capacity=%d, count=%d",
this, (int)index, (int)capacity(), (int)mCount);
if (index < capacity()) {
void* buffer = editArrayImpl();
if (buffer) {
return reinterpret_cast<char*>(buffer) + index*mItemSize;
}
}
return 0;
}
const void* VectorImpl::itemLocation(size_t index) const
{
ALOG_ASSERT(index<capacity(),
"[%p] itemLocation: index=%d, capacity=%d, count=%d",
this, (int)index, (int)capacity(), (int)mCount);
if (index < capacity()) {
const void* buffer = arrayImpl();
if (buffer) {
return reinterpret_cast<const char*>(buffer) + index*mItemSize;
}
}
return 0;
}
ssize_t VectorImpl::setCapacity(size_t new_capacity)
{
// The capacity must always be greater than or equal to the size
// of this vector.
if (new_capacity <= size()) {
return capacity();
}
size_t new_allocation_size = 0;
LOG_ALWAYS_FATAL_IF(!safe_mul(&new_allocation_size, new_capacity, mItemSize));
SharedBuffer* sb = SharedBuffer::alloc(new_allocation_size);
if (sb) {
void* array = sb->data();
_do_copy(array, mStorage, size());
release_storage();
mStorage = const_cast<void*>(array);
} else {
return NO_MEMORY;
}
return new_capacity;
}
ssize_t VectorImpl::resize(size_t size) {
ssize_t result = NO_ERROR;
if (size > mCount) {
result = insertAt(mCount, size - mCount);
} else if (size < mCount) {
result = removeItemsAt(size, mCount - size);
}
return result < 0 ? result : size;
}
void VectorImpl::release_storage()
{
if (mStorage) {
const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage);
if (sb->release(SharedBuffer::eKeepStorage) == 1) {
_do_destroy(mStorage, mCount);
SharedBuffer::dealloc(sb);
}
}
}
void* VectorImpl::_grow(size_t where, size_t amount)
{
// ALOGV("_grow(this=%p, where=%d, amount=%d) count=%d, capacity=%d",
// this, (int)where, (int)amount, (int)mCount, (int)capacity());
ALOG_ASSERT(where <= mCount,
"[%p] _grow: where=%d, amount=%d, count=%d",
this, (int)where, (int)amount, (int)mCount); // caller already checked
size_t new_size;
LOG_ALWAYS_FATAL_IF(!safe_add(&new_size, mCount, amount), "new_size overflow");
if (capacity() < new_size) {
// NOTE: This implementation used to resize vectors as per ((3*x + 1) / 2)
// (sigh..). Also note, the " + 1" was necessary to handle the special case
// where x == 1, where the resized_capacity will be equal to the old
// capacity without the +1. The old calculation wouldn't work properly
// if x was zero.
//
// This approximates the old calculation, using (x + (x/2) + 1) instead.
size_t new_capacity = 0;
LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_size, (new_size / 2)),
"new_capacity overflow");
LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_capacity, static_cast<size_t>(1u)),
"new_capacity overflow");
new_capacity = max(kMinVectorCapacity, new_capacity);
size_t new_alloc_size = 0;
LOG_ALWAYS_FATAL_IF(!safe_mul(&new_alloc_size, new_capacity, mItemSize),
"new_alloc_size overflow");
// ALOGV("grow vector %p, new_capacity=%d", this, (int)new_capacity);
if ((mStorage) &&
(mCount==where) &&
(mFlags & HAS_TRIVIAL_COPY) &&
(mFlags & HAS_TRIVIAL_DTOR))
{
const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage);
SharedBuffer* sb = cur_sb->editResize(new_alloc_size);
if (sb) {
mStorage = sb->data();
} else {
return NULL;
}
} else {
SharedBuffer* sb = SharedBuffer::alloc(new_alloc_size);
if (sb) {
void* array = sb->data();
if (where != 0) {
_do_copy(array, mStorage, where);
}
if (where != mCount) {
const void* from = reinterpret_cast<const uint8_t *>(mStorage) + where*mItemSize;
void* dest = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize;
_do_copy(dest, from, mCount-where);
}
release_storage();
mStorage = const_cast<void*>(array);
} else {
return NULL;
}
}
} else {
void* array = editArrayImpl();
if (where != mCount) {
const void* from = reinterpret_cast<const uint8_t *>(array) + where*mItemSize;
void* to = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize;
_do_move_forward(to, from, mCount - where);
}
}
mCount = new_size;
void* free_space = const_cast<void*>(itemLocation(where));
return free_space;
}
void VectorImpl::_shrink(size_t where, size_t amount)
{
if (!mStorage)
return;
// ALOGV("_shrink(this=%p, where=%d, amount=%d) count=%d, capacity=%d",
// this, (int)where, (int)amount, (int)mCount, (int)capacity());
ALOG_ASSERT(where + amount <= mCount,
"[%p] _shrink: where=%d, amount=%d, count=%d",
this, (int)where, (int)amount, (int)mCount); // caller already checked
size_t new_size;
LOG_ALWAYS_FATAL_IF(!safe_sub(&new_size, mCount, amount));
if (new_size < (capacity() / 2)) {
// NOTE: (new_size * 2) is safe because capacity didn't overflow and
// new_size < (capacity / 2)).
const size_t new_capacity = max(kMinVectorCapacity, new_size * 2);
// NOTE: (new_capacity * mItemSize), (where * mItemSize) and
// ((where + amount) * mItemSize) beyond this point are safe because
// we are always reducing the capacity of the underlying SharedBuffer.
// In other words, (old_capacity * mItemSize) did not overflow, and
// where < (where + amount) < new_capacity < old_capacity.
if ((where == new_size) &&
(mFlags & HAS_TRIVIAL_COPY) &&
(mFlags & HAS_TRIVIAL_DTOR))
{
const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage);
SharedBuffer* sb = cur_sb->editResize(new_capacity * mItemSize);
if (sb) {
mStorage = sb->data();
} else {
return;
}
} else {
SharedBuffer* sb = SharedBuffer::alloc(new_capacity * mItemSize);
if (sb) {
void* array = sb->data();
if (where != 0) {
_do_copy(array, mStorage, where);
}
if (where != new_size) {
const void* from = reinterpret_cast<const uint8_t *>(mStorage) + (where+amount)*mItemSize;
void* dest = reinterpret_cast<uint8_t *>(array) + where*mItemSize;
_do_copy(dest, from, new_size - where);
}
release_storage();
mStorage = const_cast<void*>(array);
} else{
return;
}
}
} else {
void* array = editArrayImpl();
void* to = reinterpret_cast<uint8_t *>(array) + where*mItemSize;
_do_destroy(to, amount);
if (where != new_size) {
const void* from = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize;
_do_move_backward(to, from, new_size - where);
}
}
mCount = new_size;
}
size_t VectorImpl::itemSize() const {
return mItemSize;
}
void VectorImpl::_do_construct(void* storage, size_t num) const
{
if (!(mFlags & HAS_TRIVIAL_CTOR)) {
do_construct(storage, num);
}
}
void VectorImpl::_do_destroy(void* storage, size_t num) const
{
if (!(mFlags & HAS_TRIVIAL_DTOR)) {
do_destroy(storage, num);
}
}
void VectorImpl::_do_copy(void* dest, const void* from, size_t num) const
{
if (!(mFlags & HAS_TRIVIAL_COPY)) {
do_copy(dest, from, num);
} else {
memcpy(dest, from, num*itemSize());
}
}
void VectorImpl::_do_splat(void* dest, const void* item, size_t num) const {
do_splat(dest, item, num);
}
void VectorImpl::_do_move_forward(void* dest, const void* from, size_t num) const {
do_move_forward(dest, from, num);
}
void VectorImpl::_do_move_backward(void* dest, const void* from, size_t num) const {
do_move_backward(dest, from, num);
}
/*****************************************************************************/
SortedVectorImpl::SortedVectorImpl(size_t itemSize, uint32_t flags)
: VectorImpl(itemSize, flags)
{
}
SortedVectorImpl::SortedVectorImpl(const VectorImpl& rhs)
: VectorImpl(rhs)
{
}
SortedVectorImpl::~SortedVectorImpl()
{
}
SortedVectorImpl& SortedVectorImpl::operator = (const SortedVectorImpl& rhs)
{
return static_cast<SortedVectorImpl&>( VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)) );
}
ssize_t SortedVectorImpl::indexOf(const void* item) const
{
return _indexOrderOf(item);
}
size_t SortedVectorImpl::orderOf(const void* item) const
{
size_t o;
_indexOrderOf(item, &o);
return o;
}
ssize_t SortedVectorImpl::_indexOrderOf(const void* item, size_t* order) const
{
if (order) *order = 0;
if (isEmpty()) {
return NAME_NOT_FOUND;
}
// binary search
ssize_t err = NAME_NOT_FOUND;
ssize_t l = 0;
ssize_t h = size()-1;
ssize_t mid;
const void* a = arrayImpl();
const size_t s = itemSize();
while (l <= h) {
mid = l + (h - l)/2;
const void* const curr = reinterpret_cast<const char *>(a) + (mid*s);
const int c = do_compare(curr, item);
if (c == 0) {
err = l = mid;
break;
} else if (c < 0) {
l = mid + 1;
} else {
h = mid - 1;
}
}
if (order) *order = l;
return err;
}
ssize_t SortedVectorImpl::add(const void* item)
{
size_t order;
ssize_t index = _indexOrderOf(item, &order);
if (index < 0) {
index = VectorImpl::insertAt(item, order, 1);
} else {
index = VectorImpl::replaceAt(item, index);
}
return index;
}
ssize_t SortedVectorImpl::merge(const VectorImpl& vector)
{
// naive merge...
if (!vector.isEmpty()) {
const void* buffer = vector.arrayImpl();
const size_t is = itemSize();
size_t s = vector.size();
for (size_t i=0 ; i<s ; i++) {
ssize_t err = add( reinterpret_cast<const char*>(buffer) + i*is );
if (err<0) {
return err;
}
}
}
return NO_ERROR;
}
ssize_t SortedVectorImpl::merge(const SortedVectorImpl& vector)
{
// we've merging a sorted vector... nice!
ssize_t err = NO_ERROR;
if (!vector.isEmpty()) {
// first take care of the case where the vectors are sorted together
if (do_compare(vector.itemLocation(vector.size()-1), arrayImpl()) <= 0) {
err = VectorImpl::insertVectorAt(static_cast<const VectorImpl&>(vector), 0);
} else if (do_compare(vector.arrayImpl(), itemLocation(size()-1)) >= 0) {
err = VectorImpl::appendVector(static_cast<const VectorImpl&>(vector));
} else {
// this could be made a little better
err = merge(static_cast<const VectorImpl&>(vector));
}
}
return err;
}
ssize_t SortedVectorImpl::remove(const void* item)
{
ssize_t i = indexOf(item);
if (i>=0) {
VectorImpl::removeItemsAt(i, 1);
}
return i;
}
/*****************************************************************************/
}; // namespace android
|