1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SOME COMMENTS ABOUT USAGE:
// This provides primarily wp<> weak pointer types and RefBase, which work
// together with sp<> from <StrongPointer.h>.
// sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
// to operate. As long as the object they are templated with implements that
// protocol, these smart pointers work. In several places the platform
// instantiates sp<> with non-RefBase objects; the two are not tied to each
// other.
// RefBase is such an implementation and it supports strong pointers, weak
// pointers and some magic features for the binder.
// So, when using RefBase objects, you have the ability to use strong and weak
// pointers through sp<> and wp<>.
// Normally, when the last strong pointer goes away, the object is destroyed,
// i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
// freed until the last weak pointer is released.
// Weak pointers are essentially "safe" pointers. They are always safe to
// access through promote(). They may return nullptr if the object was
// destroyed because it ran out of strong pointers. This makes them good candidates
// for keys in a cache for instance.
// Weak pointers remain valid for comparison purposes even after the underlying
// object has been destroyed. Even if object A is destroyed and its memory reused
// for B, A remaining weak pointer to A will not compare equal to one to B.
// This again makes them attractive for use as keys.
// How is this supposed / intended to be used?
// Our recommendation is to use strong references (sp<>) when there is an
// ownership relation. e.g. when an object "owns" another one, use a strong
// ref. And of course use strong refs as arguments of functions (it's extremely
// rare that a function will take a wp<>).
// Typically a newly allocated object will immediately be used to initialize
// a strong pointer, which may then be used to construct or assign to other
// strong and weak pointers.
// Use weak references when there are no ownership relation. e.g. the keys in a
// cache (you cannot use plain pointers because there is no safe way to acquire
// a strong reference from a vanilla pointer).
// This implies that two objects should never (or very rarely) have sp<> on
// each other, because they can't both own each other.
// Caveats with reference counting
// Obviously, circular strong references are a big problem; this creates leaks
// and it's hard to debug -- except it's in fact really easy because RefBase has
// tons of debugging code for that. It can basically tell you exactly where the
// leak is.
// Another problem has to do with destructors with side effects. You must
// assume that the destructor of reference counted objects can be called AT ANY
// TIME. For instance code as simple as this:
// void setStuff(const sp<Stuff>& stuff) {
// std::lock_guard<std::mutex> lock(mMutex);
// mStuff = stuff;
// }
// is very dangerous. This code WILL deadlock one day or another.
// What isn't obvious is that ~Stuff() can be called as a result of the
// assignment. And it gets called with the lock held. First of all, the lock is
// protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
// mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is
// virtual, now you're calling into "user" code (potentially), by that, I mean,
// code you didn't even write.
// A correct way to write this code is something like:
// void setStuff(const sp<Stuff>& stuff) {
// std::unique_lock<std::mutex> lock(mMutex);
// sp<Stuff> hold = mStuff;
// mStuff = stuff;
// lock.unlock();
// }
// More importantly, reference counted objects should do as little work as
// possible in their destructor, or at least be mindful that their destructor
// could be called from very weird and unintended places.
// Other more specific restrictions for wp<> and sp<>:
// Do not construct a strong pointer to "this" in an object's constructor.
// The onFirstRef() callback would be made on an incompletely constructed
// object.
// Construction of a weak pointer to "this" in an object's constructor is also
// discouraged. But the implementation was recently changed so that, in the
// absence of extendObjectLifetime() calls, weak pointers no longer impact
// object lifetime, and hence this no longer risks premature deallocation,
// and hence usually works correctly.
// Such strong or weak pointers can be safely created in the RefBase onFirstRef()
// callback.
// Use of wp::unsafe_get() for any purpose other than debugging is almost
// always wrong. Unless you somehow know that there is a longer-lived sp<> to
// the same object, it may well return a pointer to a deallocated object that
// has since been reallocated for a different purpose. (And if you know there
// is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
// dereferenced by using promote().
// Any object inheriting from RefBase should always be destroyed as the result
// of a reference count decrement, not via any other means. Such objects
// should never be stack allocated, or appear directly as data members in other
// objects. Objects inheriting from RefBase should have their strong reference
// count incremented as soon as possible after construction. Usually this
// will be done via construction of an sp<> to the object, but may instead
// involve other means of calling RefBase::incStrong().
// Explicitly deleting or otherwise destroying a RefBase object with outstanding
// wp<> or sp<> pointers to it will result in an abort or heap corruption.
// It is particularly important not to mix sp<> and direct storage management
// since the sp from raw pointer constructor is implicit. Thus if a RefBase-
// -derived object of type T is managed without ever incrementing its strong
// count, and accidentally passed to f(sp<T>), a strong pointer to the object
// will be temporarily constructed and destroyed, prematurely deallocating the
// object, and resulting in heap corruption. None of this would be easily
// visible in the source.
// Extra Features:
// RefBase::extendObjectLifetime() can be used to prevent destruction of the
// object while there are still weak references. This is really special purpose
// functionality to support Binder.
// Wp::promote(), implemented via the attemptIncStrong() member function, is
// used to try to convert a weak pointer back to a strong pointer. It's the
// normal way to try to access the fields of an object referenced only through
// a wp<>. Binder code also sometimes uses attemptIncStrong() directly.
// RefBase provides a number of additional callbacks for certain reference count
// events, as well as some debugging facilities.
// Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
// Otherwise little checking is provided.
// Thread safety:
// Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
// sp<> and wp<> instances that happen to refer to the same underlying object.
// They do NOT support concurrent access (where at least one access is a write)
// to THE SAME sp<> or wp<>. In effect, their thread-safety properties are
// exactly like those of T*, NOT atomic<T*>.
#ifndef ANDROID_REF_BASE_H
#define ANDROID_REF_BASE_H
#include <atomic>
#include <stdint.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
// LightRefBase used to be declared in this header, so we have to include it
#include <utils/LightRefBase.h>
#include <utils/StrongPointer.h>
#include <utils/TypeHelpers.h>
// ---------------------------------------------------------------------------
namespace android {
class TextOutput;
TextOutput& printWeakPointer(TextOutput& to, const void* val);
// ---------------------------------------------------------------------------
#define COMPARE_WEAK(_op_) \
inline bool operator _op_ (const sp<T>& o) const { \
return m_ptr _op_ o.m_ptr; \
} \
inline bool operator _op_ (const T* o) const { \
return m_ptr _op_ o; \
} \
template<typename U> \
inline bool operator _op_ (const sp<U>& o) const { \
return m_ptr _op_ o.m_ptr; \
} \
template<typename U> \
inline bool operator _op_ (const U* o) const { \
return m_ptr _op_ o; \
}
// ---------------------------------------------------------------------------
// RefererenceRenamer is pure abstract, there is no virtual method
// implementation to put in a translation unit in order to silence the
// weak vtables warning.
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wweak-vtables"
#endif
class ReferenceRenamer {
protected:
// destructor is purposely not virtual so we avoid code overhead from
// subclasses; we have to make it protected to guarantee that it
// cannot be called from this base class (and to make strict compilers
// happy).
~ReferenceRenamer() { }
public:
virtual void operator()(size_t i) const = 0;
};
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// ---------------------------------------------------------------------------
class RefBase
{
public:
void incStrong(const void* id) const;
void decStrong(const void* id) const;
void forceIncStrong(const void* id) const;
//! DEBUGGING ONLY: Get current strong ref count.
int32_t getStrongCount() const;
class weakref_type
{
public:
RefBase* refBase() const;
void incWeak(const void* id);
void decWeak(const void* id);
// acquires a strong reference if there is already one.
bool attemptIncStrong(const void* id);
// acquires a weak reference if there is already one.
// This is not always safe. see ProcessState.cpp and BpBinder.cpp
// for proper use.
bool attemptIncWeak(const void* id);
//! DEBUGGING ONLY: Get current weak ref count.
int32_t getWeakCount() const;
//! DEBUGGING ONLY: Print references held on object.
void printRefs() const;
//! DEBUGGING ONLY: Enable tracking for this object.
// enable -- enable/disable tracking
// retain -- when tracking is enable, if true, then we save a stack trace
// for each reference and dereference; when retain == false, we
// match up references and dereferences and keep only the
// outstanding ones.
void trackMe(bool enable, bool retain);
};
weakref_type* createWeak(const void* id) const;
weakref_type* getWeakRefs() const;
//! DEBUGGING ONLY: Print references held on object.
inline void printRefs() const { getWeakRefs()->printRefs(); }
//! DEBUGGING ONLY: Enable tracking of object.
inline void trackMe(bool enable, bool retain)
{
getWeakRefs()->trackMe(enable, retain);
}
typedef RefBase basetype;
protected:
RefBase();
virtual ~RefBase();
//! Flags for extendObjectLifetime()
enum {
OBJECT_LIFETIME_STRONG = 0x0000,
OBJECT_LIFETIME_WEAK = 0x0001,
OBJECT_LIFETIME_MASK = 0x0001
};
void extendObjectLifetime(int32_t mode);
//! Flags for onIncStrongAttempted()
enum {
FIRST_INC_STRONG = 0x0001
};
// Invoked after creation of initial strong pointer/reference.
virtual void onFirstRef();
// Invoked when either the last strong reference goes away, or we need to undo
// the effect of an unnecessary onIncStrongAttempted.
virtual void onLastStrongRef(const void* id);
// Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to
// strong reference. May have side effects if it returns true.
// The first flags argument is always FIRST_INC_STRONG.
// TODO: Remove initial flag argument.
virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
// Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
// kind goes away. Unused.
// TODO: Remove.
virtual void onLastWeakRef(const void* id);
private:
friend class weakref_type;
class weakref_impl;
RefBase(const RefBase& o);
RefBase& operator=(const RefBase& o);
private:
friend class ReferenceMover;
static void renameRefs(size_t n, const ReferenceRenamer& renamer);
static void renameRefId(weakref_type* ref,
const void* old_id, const void* new_id);
static void renameRefId(RefBase* ref,
const void* old_id, const void* new_id);
weakref_impl* const mRefs;
};
// ---------------------------------------------------------------------------
template <typename T>
class wp
{
public:
typedef typename RefBase::weakref_type weakref_type;
inline wp() : m_ptr(0) { }
wp(T* other); // NOLINT(implicit)
wp(const wp<T>& other);
explicit wp(const sp<T>& other);
template<typename U> wp(U* other); // NOLINT(implicit)
template<typename U> wp(const sp<U>& other); // NOLINT(implicit)
template<typename U> wp(const wp<U>& other); // NOLINT(implicit)
~wp();
// Assignment
wp& operator = (T* other);
wp& operator = (const wp<T>& other);
wp& operator = (const sp<T>& other);
template<typename U> wp& operator = (U* other);
template<typename U> wp& operator = (const wp<U>& other);
template<typename U> wp& operator = (const sp<U>& other);
void set_object_and_refs(T* other, weakref_type* refs);
// promotion to sp
sp<T> promote() const;
// Reset
void clear();
// Accessors
inline weakref_type* get_refs() const { return m_refs; }
inline T* unsafe_get() const { return m_ptr; }
// Operators
COMPARE_WEAK(==)
COMPARE_WEAK(!=)
COMPARE_WEAK(>)
COMPARE_WEAK(<)
COMPARE_WEAK(<=)
COMPARE_WEAK(>=)
inline bool operator == (const wp<T>& o) const {
return (m_ptr == o.m_ptr) && (m_refs == o.m_refs);
}
template<typename U>
inline bool operator == (const wp<U>& o) const {
return m_ptr == o.m_ptr;
}
inline bool operator > (const wp<T>& o) const {
return (m_ptr == o.m_ptr) ? (m_refs > o.m_refs) : (m_ptr > o.m_ptr);
}
template<typename U>
inline bool operator > (const wp<U>& o) const {
return (m_ptr == o.m_ptr) ? (m_refs > o.m_refs) : (m_ptr > o.m_ptr);
}
inline bool operator < (const wp<T>& o) const {
return (m_ptr == o.m_ptr) ? (m_refs < o.m_refs) : (m_ptr < o.m_ptr);
}
template<typename U>
inline bool operator < (const wp<U>& o) const {
return (m_ptr == o.m_ptr) ? (m_refs < o.m_refs) : (m_ptr < o.m_ptr);
}
inline bool operator != (const wp<T>& o) const { return m_refs != o.m_refs; }
template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
inline bool operator <= (const wp<T>& o) const { return !operator > (o); }
template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
inline bool operator >= (const wp<T>& o) const { return !operator < (o); }
template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
private:
template<typename Y> friend class sp;
template<typename Y> friend class wp;
T* m_ptr;
weakref_type* m_refs;
};
template <typename T>
TextOutput& operator<<(TextOutput& to, const wp<T>& val);
#undef COMPARE_WEAK
// ---------------------------------------------------------------------------
// No user serviceable parts below here.
template<typename T>
wp<T>::wp(T* other)
: m_ptr(other)
{
if (other) m_refs = other->createWeak(this);
}
template<typename T>
wp<T>::wp(const wp<T>& other)
: m_ptr(other.m_ptr), m_refs(other.m_refs)
{
if (m_ptr) m_refs->incWeak(this);
}
template<typename T>
wp<T>::wp(const sp<T>& other)
: m_ptr(other.m_ptr)
{
if (m_ptr) {
m_refs = m_ptr->createWeak(this);
}
}
template<typename T> template<typename U>
wp<T>::wp(U* other)
: m_ptr(other)
{
if (other) m_refs = other->createWeak(this);
}
template<typename T> template<typename U>
wp<T>::wp(const wp<U>& other)
: m_ptr(other.m_ptr)
{
if (m_ptr) {
m_refs = other.m_refs;
m_refs->incWeak(this);
}
}
template<typename T> template<typename U>
wp<T>::wp(const sp<U>& other)
: m_ptr(other.m_ptr)
{
if (m_ptr) {
m_refs = m_ptr->createWeak(this);
}
}
template<typename T>
wp<T>::~wp()
{
if (m_ptr) m_refs->decWeak(this);
}
template<typename T>
wp<T>& wp<T>::operator = (T* other)
{
weakref_type* newRefs =
other ? other->createWeak(this) : 0;
if (m_ptr) m_refs->decWeak(this);
m_ptr = other;
m_refs = newRefs;
return *this;
}
template<typename T>
wp<T>& wp<T>::operator = (const wp<T>& other)
{
weakref_type* otherRefs(other.m_refs);
T* otherPtr(other.m_ptr);
if (otherPtr) otherRefs->incWeak(this);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = otherRefs;
return *this;
}
template<typename T>
wp<T>& wp<T>::operator = (const sp<T>& other)
{
weakref_type* newRefs =
other != NULL ? other->createWeak(this) : 0;
T* otherPtr(other.m_ptr);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = newRefs;
return *this;
}
template<typename T> template<typename U>
wp<T>& wp<T>::operator = (U* other)
{
weakref_type* newRefs =
other ? other->createWeak(this) : 0;
if (m_ptr) m_refs->decWeak(this);
m_ptr = other;
m_refs = newRefs;
return *this;
}
template<typename T> template<typename U>
wp<T>& wp<T>::operator = (const wp<U>& other)
{
weakref_type* otherRefs(other.m_refs);
U* otherPtr(other.m_ptr);
if (otherPtr) otherRefs->incWeak(this);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = otherRefs;
return *this;
}
template<typename T> template<typename U>
wp<T>& wp<T>::operator = (const sp<U>& other)
{
weakref_type* newRefs =
other != NULL ? other->createWeak(this) : 0;
U* otherPtr(other.m_ptr);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = newRefs;
return *this;
}
template<typename T>
void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
{
if (other) refs->incWeak(this);
if (m_ptr) m_refs->decWeak(this);
m_ptr = other;
m_refs = refs;
}
template<typename T>
sp<T> wp<T>::promote() const
{
sp<T> result;
if (m_ptr && m_refs->attemptIncStrong(&result)) {
result.set_pointer(m_ptr);
}
return result;
}
template<typename T>
void wp<T>::clear()
{
if (m_ptr) {
m_refs->decWeak(this);
m_ptr = 0;
}
}
template <typename T>
inline TextOutput& operator<<(TextOutput& to, const wp<T>& val)
{
return printWeakPointer(to, val.unsafe_get());
}
// ---------------------------------------------------------------------------
// this class just serves as a namespace so TYPE::moveReferences can stay
// private.
class ReferenceMover {
public:
// it would be nice if we could make sure no extra code is generated
// for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
// Using a sp<RefBase> override doesn't work; it's a bit like we wanted
// a template<typename TYPE inherits RefBase> template...
template<typename TYPE> static inline
void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
class Renamer : public ReferenceRenamer {
sp<TYPE>* d_;
sp<TYPE> const* s_;
virtual void operator()(size_t i) const {
// The id are known to be the sp<>'s this pointer
TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
}
public:
Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
virtual ~Renamer() { }
};
memmove(dest, src, n*sizeof(sp<TYPE>));
TYPE::renameRefs(n, Renamer(dest, src));
}
template<typename TYPE> static inline
void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
class Renamer : public ReferenceRenamer {
wp<TYPE>* d_;
wp<TYPE> const* s_;
virtual void operator()(size_t i) const {
// The id are known to be the wp<>'s this pointer
TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
}
public:
Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
virtual ~Renamer() { }
};
memmove(dest, src, n*sizeof(wp<TYPE>));
TYPE::renameRefs(n, Renamer(dest, src));
}
};
// specialization for moving sp<> and wp<> types.
// these are used by the [Sorted|Keyed]Vector<> implementations
// sp<> and wp<> need to be handled specially, because they do not
// have trivial copy operation in the general case (see RefBase.cpp
// when DEBUG ops are enabled), but can be implemented very
// efficiently in most cases.
template<typename TYPE> inline
void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
template<typename TYPE> inline
void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
template<typename TYPE> inline
void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
template<typename TYPE> inline
void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
}; // namespace android
// ---------------------------------------------------------------------------
#endif // ANDROID_REF_BASE_H
|