1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <deque>
#include <fcntl.h>
#include <random>
#include <string.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <gtest/gtest.h>
#include <storaged.h> // data structures
#include <storaged_utils.h> // functions to test
#define MMC_DISK_STATS_PATH "/sys/block/mmcblk0/stat"
#define SDA_DISK_STATS_PATH "/sys/block/sda/stat"
static void pause(uint32_t sec) {
const char* path = "/cache/test";
int fd = open(path, O_WRONLY | O_CREAT, 0600);
ASSERT_LT(-1, fd);
char buffer[2048];
memset(buffer, 1, sizeof(buffer));
int loop_size = 100;
for (int i = 0; i < loop_size; ++i) {
ASSERT_EQ(2048, write(fd, buffer, sizeof(buffer)));
}
fsync(fd);
close(fd);
fd = open(path, O_RDONLY);
ASSERT_LT(-1, fd);
for (int i = 0; i < loop_size; ++i) {
ASSERT_EQ(2048, read(fd, buffer, sizeof(buffer)));
}
close(fd);
sleep(sec);
}
// the return values of the tested functions should be the expected ones
const char* DISK_STATS_PATH;
TEST(storaged_test, retvals) {
struct disk_stats stats;
memset(&stats, 0, sizeof(struct disk_stats));
if (access(MMC_DISK_STATS_PATH, R_OK) >= 0) {
DISK_STATS_PATH = MMC_DISK_STATS_PATH;
} else if (access(SDA_DISK_STATS_PATH, R_OK) >= 0) {
DISK_STATS_PATH = SDA_DISK_STATS_PATH;
} else {
return;
}
EXPECT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats));
struct disk_stats old_stats;
memset(&old_stats, 0, sizeof(struct disk_stats));
old_stats = stats;
const char wrong_path[] = "/this/is/wrong";
EXPECT_FALSE(parse_disk_stats(wrong_path, &stats));
// reading a wrong path should not damage the output structure
EXPECT_EQ(0, memcmp(&stats, &old_stats, sizeof(disk_stats)));
}
TEST(storaged_test, disk_stats) {
struct disk_stats stats;
memset(&stats, 0, sizeof(struct disk_stats));
ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats));
// every entry of stats (except io_in_flight) should all be greater than 0
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
if (i == 8) continue; // skip io_in_flight which can be 0
EXPECT_LT((uint64_t)0, *((uint64_t*)&stats + i));
}
// accumulation of the increments should be the same with the overall increment
struct disk_stats base, tmp, curr, acc, inc[5];
memset(&base, 0, sizeof(struct disk_stats));
memset(&tmp, 0, sizeof(struct disk_stats));
memset(&acc, 0, sizeof(struct disk_stats));
for (uint i = 0; i < 5; ++i) {
ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &curr));
if (i == 0) {
base = curr;
tmp = curr;
sleep(5);
continue;
}
inc[i] = get_inc_disk_stats(&tmp, &curr);
add_disk_stats(&inc[i], &acc);
tmp = curr;
pause(5);
}
struct disk_stats overall_inc;
memset(&overall_inc, 0, sizeof(disk_stats));
overall_inc= get_inc_disk_stats(&base, &curr);
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
if (i == 8) continue; // skip io_in_flight which can be 0
EXPECT_EQ(*((uint64_t*)&overall_inc + i), *((uint64_t*)&acc + i));
}
}
static double mean(std::deque<uint32_t> nums) {
double sum = 0.0;
for (uint32_t i : nums) {
sum += i;
}
return sum / nums.size();
}
static double standard_deviation(std::deque<uint32_t> nums) {
double sum = 0.0;
double avg = mean(nums);
for (uint32_t i : nums) {
sum += ((double)i - avg) * ((double)i - avg);
}
return sqrt(sum / nums.size());
}
TEST(storaged_test, stream_stats) {
// 100 random numbers
std::vector<uint32_t> data = {8147,9058,1270,9134,6324,975,2785,5469,9575,9649,1576,9706,9572,4854,8003,1419,4218,9157,7922,9595,6557,357,8491,9340,6787,7577,7431,3922,6555,1712,7060,318,2769,462,971,8235,6948,3171,9502,344,4387,3816,7655,7952,1869,4898,4456,6463,7094,7547,2760,6797,6551,1626,1190,4984,9597,3404,5853,2238,7513,2551,5060,6991,8909,9593,5472,1386,1493,2575,8407,2543,8143,2435,9293,3500,1966,2511,6160,4733,3517,8308,5853,5497,9172,2858,7572,7537,3804,5678,759,540,5308,7792,9340,1299,5688,4694,119,3371};
std::deque<uint32_t> test_data;
stream_stats sstats;
for (uint32_t i : data) {
test_data.push_back(i);
sstats.add(i);
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean());
}
for (uint32_t i : data) {
test_data.pop_front();
sstats.evict(i);
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean());
}
// some real data
std::vector<uint32_t> another_data = {113875,81620,103145,28327,86855,207414,96526,52567,28553,250311};
test_data.clear();
uint32_t window_size = 2;
uint32_t idx;
stream_stats sstats1;
for (idx = 0; idx < window_size; ++idx) {
test_data.push_back(another_data[idx]);
sstats1.add(another_data[idx]);
}
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean());
for (;idx < another_data.size(); ++idx) {
test_data.pop_front();
sstats1.evict(another_data[idx - window_size]);
test_data.push_back(another_data[idx]);
sstats1.add(another_data[idx]);
EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std());
EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean());
}
}
static struct disk_perf disk_perf_multiply(struct disk_perf perf, double mul) {
struct disk_perf retval;
retval.read_perf = (double)perf.read_perf * mul;
retval.read_ios = (double)perf.read_ios * mul;
retval.write_perf = (double)perf.write_perf * mul;
retval.write_ios = (double)perf.write_ios * mul;
retval.queue = (double)perf.queue * mul;
return retval;
}
static struct disk_stats disk_stats_add(struct disk_stats stats1, struct disk_stats stats2) {
struct disk_stats retval;
retval.read_ios = stats1.read_ios + stats2.read_ios;
retval.read_merges = stats1.read_merges + stats2.read_merges;
retval.read_sectors = stats1.read_sectors + stats2.read_sectors;
retval.read_ticks = stats1.read_ticks + stats2.read_ticks;
retval.write_ios = stats1.write_ios + stats2.write_ios;
retval.write_merges = stats1.write_merges + stats2.write_merges;
retval.write_sectors = stats1.write_sectors + stats2.write_sectors;
retval.write_ticks = stats1.write_ticks + stats2.write_ticks;
retval.io_in_flight = stats1.io_in_flight + stats2.io_in_flight;
retval.io_ticks = stats1.io_ticks + stats2.io_ticks;
retval.io_in_queue = stats1.io_in_queue + stats2.io_in_queue;
retval.end_time = stats1.end_time + stats2.end_time;
return retval;
}
TEST(storaged_test, disk_stats_monitor) {
// asserting that there is one file for diskstats
ASSERT_TRUE(access(MMC_DISK_STATS_PATH, R_OK) >= 0 || access(SDA_DISK_STATS_PATH, R_OK) >= 0);
// testing if detect() will return the right value
disk_stats_monitor dsm_detect;
// feed monitor with constant perf data for io perf baseline
// using constant perf is reasonable since the functionality of stream_stats
// has already been tested
struct disk_perf norm_perf = {
.read_perf = 10 * 1024,
.read_ios = 50,
.write_perf = 5 * 1024,
.write_ios = 25,
.queue = 5
};
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> rand(0.8, 1.2);
for (uint i = 0; i < dsm_detect.mWindow; ++i) {
struct disk_perf perf = disk_perf_multiply(norm_perf, rand(gen));
dsm_detect.add(&perf);
dsm_detect.mBuffer.push(perf);
EXPECT_EQ(dsm_detect.mBuffer.size(), (uint64_t)i + 1);
}
dsm_detect.mValid = true;
dsm_detect.update_mean();
dsm_detect.update_std();
for (double i = 0; i < 2 * dsm_detect.mSigma; i += 0.5) {
struct disk_perf test_perf;
struct disk_perf test_mean = dsm_detect.mMean;
struct disk_perf test_std = dsm_detect.mStd;
test_perf.read_perf = (double)test_mean.read_perf - i * test_std.read_perf;
test_perf.read_ios = (double)test_mean.read_ios - i * test_std.read_ios;
test_perf.write_perf = (double)test_mean.write_perf - i * test_std.write_perf;
test_perf.write_ios = (double)test_mean.write_ios - i * test_std.write_ios;
test_perf.queue = (double)test_mean.queue + i * test_std.queue;
EXPECT_EQ((i > dsm_detect.mSigma), dsm_detect.detect(&test_perf));
}
// testing if stalled disk_stats can be correctly accumulated in the monitor
disk_stats_monitor dsm_acc;
struct disk_stats norm_inc = {
.read_ios = 200,
.read_merges = 0,
.read_sectors = 200,
.read_ticks = 200,
.write_ios = 100,
.write_merges = 0,
.write_sectors = 100,
.write_ticks = 100,
.io_in_flight = 0,
.io_ticks = 600,
.io_in_queue = 300,
.start_time = 0,
.end_time = 100,
.counter = 0,
.io_avg = 0
};
struct disk_stats stall_inc = {
.read_ios = 200,
.read_merges = 0,
.read_sectors = 20,
.read_ticks = 200,
.write_ios = 100,
.write_merges = 0,
.write_sectors = 10,
.write_ticks = 100,
.io_in_flight = 0,
.io_ticks = 600,
.io_in_queue = 1200,
.start_time = 0,
.end_time = 100,
.counter = 0,
.io_avg = 0
};
struct disk_stats stats_base;
memset(&stats_base, 0, sizeof(stats_base));
int loop_size = 100;
for (int i = 0; i < loop_size; ++i) {
stats_base = disk_stats_add(stats_base, norm_inc);
dsm_acc.update(&stats_base);
EXPECT_EQ(dsm_acc.mValid, (uint32_t)(i + 1) >= dsm_acc.mWindow);
EXPECT_FALSE(dsm_acc.mStall);
}
stats_base = disk_stats_add(stats_base, stall_inc);
dsm_acc.update(&stats_base);
EXPECT_TRUE(dsm_acc.mValid);
EXPECT_TRUE(dsm_acc.mStall);
for (int i = 0; i < 10; ++i) {
stats_base = disk_stats_add(stats_base, norm_inc);
dsm_acc.update(&stats_base);
EXPECT_TRUE(dsm_acc.mValid);
EXPECT_FALSE(dsm_acc.mStall);
}
}
static void expect_increasing(struct disk_stats stats1, struct disk_stats stats2) {
EXPECT_LE(stats1.read_ios, stats2.read_ios);
EXPECT_LE(stats1.read_merges, stats2.read_merges);
EXPECT_LE(stats1.read_sectors, stats2.read_sectors);
EXPECT_LE(stats1.read_ticks, stats2.read_ticks);
EXPECT_LE(stats1.write_ios, stats2.write_ios);
EXPECT_LE(stats1.write_merges, stats2.write_merges);
EXPECT_LE(stats1.write_sectors, stats2.write_sectors);
EXPECT_LE(stats1.write_ticks, stats2.write_ticks);
EXPECT_LE(stats1.io_ticks, stats2.io_ticks);
EXPECT_LE(stats1.io_in_queue, stats2.io_in_queue);
}
#define TEST_LOOPS 20
TEST(storaged_test, disk_stats_publisher) {
// asserting that there is one file for diskstats
ASSERT_TRUE(access(MMC_DISK_STATS_PATH, R_OK) >= 0 || access(SDA_DISK_STATS_PATH, R_OK) >= 0);
disk_stats_publisher dsp;
struct disk_stats prev;
memset(&prev, 0, sizeof(prev));
for (int i = 0; i < TEST_LOOPS; ++i) {
dsp.update();
expect_increasing(prev, dsp.mPrevious);
prev = dsp.mPrevious;
pause(10);
}
}
|