File: usb_linux.cpp

package info (click to toggle)
android-platform-system-core 1%3A8.1.0%2Br23-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 19,480 kB
  • sloc: cpp: 137,841; ansic: 30,813; asm: 3,504; python: 1,754; makefile: 235; sh: 225; xml: 73
file content (605 lines) | stat: -rw-r--r-- 20,262 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define TRACE_TAG USB

#include "sysdeps.h"

#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/usb/ch9.h>
#include <linux/usbdevice_fs.h>
#include <linux/version.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <unistd.h>

#include <chrono>
#include <condition_variable>
#include <list>
#include <mutex>
#include <string>
#include <thread>

#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>

#include "adb.h"
#include "transport.h"
#include "usb.h"

using namespace std::chrono_literals;
using namespace std::literals;

/* usb scan debugging is waaaay too verbose */
#define DBGX(x...)

namespace native {
struct usb_handle : public ::usb_handle {
    ~usb_handle() {
      if (fd != -1) unix_close(fd);
    }

    std::string path;
    int fd = -1;
    unsigned char ep_in;
    unsigned char ep_out;

    size_t max_packet_size;
    unsigned zero_mask;
    unsigned writeable = 1;

    usbdevfs_urb urb_in;
    usbdevfs_urb urb_out;

    bool urb_in_busy = false;
    bool urb_out_busy = false;
    bool dead = false;

    std::condition_variable cv;
    std::mutex mutex;

    // for garbage collecting disconnected devices
    bool mark;

    // ID of thread currently in REAPURB
    pthread_t reaper_thread = 0;
};

static auto& g_usb_handles_mutex = *new std::mutex();
static auto& g_usb_handles = *new std::list<usb_handle*>();

static int is_known_device(const char* dev_name) {
    std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
    for (usb_handle* usb : g_usb_handles) {
        if (usb->path == dev_name) {
            // set mark flag to indicate this device is still alive
            usb->mark = true;
            return 1;
        }
    }
    return 0;
}

static void kick_disconnected_devices() {
    std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
    // kick any devices in the device list that were not found in the device scan
    for (usb_handle* usb : g_usb_handles) {
        if (!usb->mark) {
            usb_kick(usb);
        } else {
            usb->mark = false;
        }
    }
}

static inline bool contains_non_digit(const char* name) {
    while (*name) {
        if (!isdigit(*name++)) return true;
    }
    return false;
}

static void find_usb_device(const std::string& base,
                            void (*register_device_callback)(const char*, const char*,
                                                             unsigned char, unsigned char, int, int,
                                                             unsigned, size_t)) {
    std::unique_ptr<DIR, int(*)(DIR*)> bus_dir(opendir(base.c_str()), closedir);
    if (!bus_dir) return;

    dirent* de;
    while ((de = readdir(bus_dir.get())) != 0) {
        if (contains_non_digit(de->d_name)) continue;

        std::string bus_name = base + "/" + de->d_name;

        std::unique_ptr<DIR, int(*)(DIR*)> dev_dir(opendir(bus_name.c_str()), closedir);
        if (!dev_dir) continue;

        while ((de = readdir(dev_dir.get()))) {
            unsigned char devdesc[4096];
            unsigned char* bufptr = devdesc;
            unsigned char* bufend;
            struct usb_device_descriptor* device;
            struct usb_config_descriptor* config;
            struct usb_interface_descriptor* interface;
            struct usb_endpoint_descriptor *ep1, *ep2;
            unsigned zero_mask = 0;
            size_t max_packet_size = 0;
            unsigned vid, pid;

            if (contains_non_digit(de->d_name)) continue;

            std::string dev_name = bus_name + "/" + de->d_name;
            if (is_known_device(dev_name.c_str())) {
                continue;
            }

            int fd = unix_open(dev_name.c_str(), O_RDONLY | O_CLOEXEC);
            if (fd == -1) {
                continue;
            }

            size_t desclength = unix_read(fd, devdesc, sizeof(devdesc));
            bufend = bufptr + desclength;

                // should have device and configuration descriptors, and atleast two endpoints
            if (desclength < USB_DT_DEVICE_SIZE + USB_DT_CONFIG_SIZE) {
                D("desclength %zu is too small", desclength);
                unix_close(fd);
                continue;
            }

            device = (struct usb_device_descriptor*)bufptr;
            bufptr += USB_DT_DEVICE_SIZE;

            if((device->bLength != USB_DT_DEVICE_SIZE) || (device->bDescriptorType != USB_DT_DEVICE)) {
                unix_close(fd);
                continue;
            }

            vid = device->idVendor;
            pid = device->idProduct;
            DBGX("[ %s is V:%04x P:%04x ]\n", dev_name.c_str(), vid, pid);

                // should have config descriptor next
            config = (struct usb_config_descriptor *)bufptr;
            bufptr += USB_DT_CONFIG_SIZE;
            if (config->bLength != USB_DT_CONFIG_SIZE || config->bDescriptorType != USB_DT_CONFIG) {
                D("usb_config_descriptor not found");
                unix_close(fd);
                continue;
            }

                // loop through all the descriptors and look for the ADB interface
            while (bufptr < bufend) {
                unsigned char length = bufptr[0];
                unsigned char type = bufptr[1];

                if (type == USB_DT_INTERFACE) {
                    interface = (struct usb_interface_descriptor *)bufptr;
                    bufptr += length;

                    if (length != USB_DT_INTERFACE_SIZE) {
                        D("interface descriptor has wrong size");
                        break;
                    }

                    DBGX("bInterfaceClass: %d,  bInterfaceSubClass: %d,"
                         "bInterfaceProtocol: %d, bNumEndpoints: %d\n",
                         interface->bInterfaceClass, interface->bInterfaceSubClass,
                         interface->bInterfaceProtocol, interface->bNumEndpoints);

                    if (interface->bNumEndpoints == 2 &&
                        is_adb_interface(interface->bInterfaceClass, interface->bInterfaceSubClass,
                                         interface->bInterfaceProtocol)) {
                        struct stat st;
                        char pathbuf[128];
                        char link[256];
                        char *devpath = nullptr;

                        DBGX("looking for bulk endpoints\n");
                            // looks like ADB...
                        ep1 = (struct usb_endpoint_descriptor *)bufptr;
                        bufptr += USB_DT_ENDPOINT_SIZE;
                            // For USB 3.0 SuperSpeed devices, skip potential
                            // USB 3.0 SuperSpeed Endpoint Companion descriptor
                        if (bufptr+2 <= devdesc + desclength &&
                            bufptr[0] == USB_DT_SS_EP_COMP_SIZE &&
                            bufptr[1] == USB_DT_SS_ENDPOINT_COMP) {
                            bufptr += USB_DT_SS_EP_COMP_SIZE;
                        }
                        ep2 = (struct usb_endpoint_descriptor *)bufptr;
                        bufptr += USB_DT_ENDPOINT_SIZE;
                        if (bufptr+2 <= devdesc + desclength &&
                            bufptr[0] == USB_DT_SS_EP_COMP_SIZE &&
                            bufptr[1] == USB_DT_SS_ENDPOINT_COMP) {
                            bufptr += USB_DT_SS_EP_COMP_SIZE;
                        }

                        if (bufptr > devdesc + desclength ||
                            ep1->bLength != USB_DT_ENDPOINT_SIZE ||
                            ep1->bDescriptorType != USB_DT_ENDPOINT ||
                            ep2->bLength != USB_DT_ENDPOINT_SIZE ||
                            ep2->bDescriptorType != USB_DT_ENDPOINT) {
                            D("endpoints not found");
                            break;
                        }

                            // both endpoints should be bulk
                        if (ep1->bmAttributes != USB_ENDPOINT_XFER_BULK ||
                            ep2->bmAttributes != USB_ENDPOINT_XFER_BULK) {
                            D("bulk endpoints not found");
                            continue;
                        }
                            /* aproto 01 needs 0 termination */
                        if (interface->bInterfaceProtocol == 0x01) {
                            max_packet_size = ep1->wMaxPacketSize;
                            zero_mask = ep1->wMaxPacketSize - 1;
                        }

                            // we have a match.  now we just need to figure out which is in and which is out.
                        unsigned char local_ep_in, local_ep_out;
                        if (ep1->bEndpointAddress & USB_ENDPOINT_DIR_MASK) {
                            local_ep_in = ep1->bEndpointAddress;
                            local_ep_out = ep2->bEndpointAddress;
                        } else {
                            local_ep_in = ep2->bEndpointAddress;
                            local_ep_out = ep1->bEndpointAddress;
                        }

                            // Determine the device path
                        if (!fstat(fd, &st) && S_ISCHR(st.st_mode)) {
                            snprintf(pathbuf, sizeof(pathbuf), "/sys/dev/char/%d:%d",
                                     major(st.st_rdev), minor(st.st_rdev));
                            ssize_t link_len = readlink(pathbuf, link, sizeof(link) - 1);
                            if (link_len > 0) {
                                link[link_len] = '\0';
                                const char* slash = strrchr(link, '/');
                                if (slash) {
                                    snprintf(pathbuf, sizeof(pathbuf),
                                             "usb:%s", slash + 1);
                                    devpath = pathbuf;
                                }
                            }
                        }

                        register_device_callback(dev_name.c_str(), devpath, local_ep_in,
                                                 local_ep_out, interface->bInterfaceNumber,
                                                 device->iSerialNumber, zero_mask, max_packet_size);
                        break;
                    }
                } else {
                    bufptr += length;
                }
            } // end of while

            unix_close(fd);
        }
    }
}

static int usb_bulk_write(usb_handle* h, const void* data, int len) {
    std::unique_lock<std::mutex> lock(h->mutex);
    D("++ usb_bulk_write ++");

    usbdevfs_urb* urb = &h->urb_out;
    memset(urb, 0, sizeof(*urb));
    urb->type = USBDEVFS_URB_TYPE_BULK;
    urb->endpoint = h->ep_out;
    urb->status = -1;
    urb->buffer = const_cast<void*>(data);
    urb->buffer_length = len;

    if (h->dead) {
        errno = EINVAL;
        return -1;
    }

    if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) {
        return -1;
    }

    h->urb_out_busy = true;
    while (true) {
        auto now = std::chrono::system_clock::now();
        if (h->cv.wait_until(lock, now + 5s) == std::cv_status::timeout || h->dead) {
            // TODO: call USBDEVFS_DISCARDURB?
            errno = ETIMEDOUT;
            return -1;
        }
        if (!h->urb_out_busy) {
            if (urb->status != 0) {
                errno = -urb->status;
                return -1;
            }
            return urb->actual_length;
        }
    }
}

static int usb_bulk_read(usb_handle* h, void* data, int len) {
    std::unique_lock<std::mutex> lock(h->mutex);
    D("++ usb_bulk_read ++");

    usbdevfs_urb* urb = &h->urb_in;
    memset(urb, 0, sizeof(*urb));
    urb->type = USBDEVFS_URB_TYPE_BULK;
    urb->endpoint = h->ep_in;
    urb->status = -1;
    urb->buffer = data;
    urb->buffer_length = len;

    if (h->dead) {
        errno = EINVAL;
        return -1;
    }

    if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) {
        return -1;
    }

    h->urb_in_busy = true;
    while (true) {
        D("[ reap urb - wait ]");
        h->reaper_thread = pthread_self();
        int fd = h->fd;
        lock.unlock();

        // This ioctl must not have TEMP_FAILURE_RETRY because we send SIGALRM to break out.
        usbdevfs_urb* out = nullptr;
        int res = ioctl(fd, USBDEVFS_REAPURB, &out);
        int saved_errno = errno;

        lock.lock();
        h->reaper_thread = 0;
        if (h->dead) {
            errno = EINVAL;
            return -1;
        }
        if (res < 0) {
            if (saved_errno == EINTR) {
                continue;
            }
            D("[ reap urb - error ]");
            errno = saved_errno;
            return -1;
        }
        D("[ urb @%p status = %d, actual = %d ]", out, out->status, out->actual_length);

        if (out == &h->urb_in) {
            D("[ reap urb - IN complete ]");
            h->urb_in_busy = false;
            if (urb->status != 0) {
                errno = -urb->status;
                return -1;
            }
            return urb->actual_length;
        }
        if (out == &h->urb_out) {
            D("[ reap urb - OUT compelete ]");
            h->urb_out_busy = false;
            h->cv.notify_all();
        }
    }
}

int usb_write(usb_handle *h, const void *_data, int len)
{
    D("++ usb_write ++");

    unsigned char *data = (unsigned char*) _data;
    int n = usb_bulk_write(h, data, len);
    if (n != len) {
        D("ERROR: n = %d, errno = %d (%s)", n, errno, strerror(errno));
        return -1;
    }

    if (h->zero_mask && !(len & h->zero_mask)) {
        // If we need 0-markers and our transfer is an even multiple of the packet size,
        // then send a zero marker.
        return usb_bulk_write(h, _data, 0);
    }

    D("-- usb_write --");
    return 0;
}

int usb_read(usb_handle *h, void *_data, int len)
{
    unsigned char *data = (unsigned char*) _data;
    int n;

    D("++ usb_read ++");
    int orig_len = len;
    while (len == orig_len) {
        int xfer = len;

        D("[ usb read %d fd = %d], path=%s", xfer, h->fd, h->path.c_str());
        n = usb_bulk_read(h, data, xfer);
        D("[ usb read %d ] = %d, path=%s", xfer, n, h->path.c_str());
        if (n <= 0) {
            if((errno == ETIMEDOUT) && (h->fd != -1)) {
                D("[ timeout ]");
                continue;
            }
            D("ERROR: n = %d, errno = %d (%s)",
                n, errno, strerror(errno));
            return -1;
        }

        len -= n;
        data += n;
    }

    D("-- usb_read --");
    return orig_len - len;
}

void usb_kick(usb_handle* h) {
    std::lock_guard<std::mutex> lock(h->mutex);
    D("[ kicking %p (fd = %d) ]", h, h->fd);
    if (!h->dead) {
        h->dead = true;

        if (h->writeable) {
            /* HACK ALERT!
            ** Sometimes we get stuck in ioctl(USBDEVFS_REAPURB).
            ** This is a workaround for that problem.
            */
            if (h->reaper_thread) {
                pthread_kill(h->reaper_thread, SIGALRM);
            }

            /* cancel any pending transactions
            ** these will quietly fail if the txns are not active,
            ** but this ensures that a reader blocked on REAPURB
            ** will get unblocked
            */
            ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_in);
            ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_out);
            h->urb_in.status = -ENODEV;
            h->urb_out.status = -ENODEV;
            h->urb_in_busy = false;
            h->urb_out_busy = false;
            h->cv.notify_all();
        } else {
            unregister_usb_transport(h);
        }
    }
}

int usb_close(usb_handle* h) {
    std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
    g_usb_handles.remove(h);

    D("-- usb close %p (fd = %d) --", h, h->fd);

    delete h;

    return 0;
}

size_t usb_get_max_packet_size(usb_handle* h) {
    return h->max_packet_size;
}

static void register_device(const char* dev_name, const char* dev_path, unsigned char ep_in,
                            unsigned char ep_out, int interface, int serial_index,
                            unsigned zero_mask, size_t max_packet_size) {
    // Since Linux will not reassign the device ID (and dev_name) as long as the
    // device is open, we can add to the list here once we open it and remove
    // from the list when we're finally closed and everything will work out
    // fine.
    //
    // If we have a usb_handle on the list of handles with a matching name, we
    // have no further work to do.
    {
        std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
        for (usb_handle* usb: g_usb_handles) {
            if (usb->path == dev_name) {
                return;
            }
        }
    }

    D("[ usb located new device %s (%d/%d/%d) ]", dev_name, ep_in, ep_out, interface);
    std::unique_ptr<usb_handle> usb(new usb_handle);
    usb->path = dev_name;
    usb->ep_in = ep_in;
    usb->ep_out = ep_out;
    usb->zero_mask = zero_mask;
    usb->max_packet_size = max_packet_size;

    // Initialize mark so we don't get garbage collected after the device scan.
    usb->mark = true;

    usb->fd = unix_open(usb->path.c_str(), O_RDWR | O_CLOEXEC);
    if (usb->fd == -1) {
        // Opening RW failed, so see if we have RO access.
        usb->fd = unix_open(usb->path.c_str(), O_RDONLY | O_CLOEXEC);
        if (usb->fd == -1) {
            D("[ usb open %s failed: %s]", usb->path.c_str(), strerror(errno));
            return;
        }
        usb->writeable = 0;
    }

    D("[ usb opened %s%s, fd=%d]",
      usb->path.c_str(), (usb->writeable ? "" : " (read-only)"), usb->fd);

    if (usb->writeable) {
        if (ioctl(usb->fd, USBDEVFS_CLAIMINTERFACE, &interface) != 0) {
            D("[ usb ioctl(%d, USBDEVFS_CLAIMINTERFACE) failed: %s]", usb->fd, strerror(errno));
            return;
        }
    }

    // Read the device's serial number.
    std::string serial_path = android::base::StringPrintf(
        "/sys/bus/usb/devices/%s/serial", dev_path + 4);
    std::string serial;
    if (!android::base::ReadFileToString(serial_path, &serial)) {
        D("[ usb read %s failed: %s ]", serial_path.c_str(), strerror(errno));
        // We don't actually want to treat an unknown serial as an error because
        // devices aren't able to communicate a serial number in early bringup.
        // http://b/20883914
        serial = "";
    }
    serial = android::base::Trim(serial);

    // Add to the end of the active handles.
    usb_handle* done_usb = usb.release();
    {
        std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
        g_usb_handles.push_back(done_usb);
    }
    register_usb_transport(done_usb, serial.c_str(), dev_path, done_usb->writeable);
}

static void device_poll_thread() {
    adb_thread_setname("device poll");
    D("Created device thread");
    while (true) {
        // TODO: Use inotify.
        find_usb_device("/dev/bus/usb", register_device);
        kick_disconnected_devices();
        std::this_thread::sleep_for(1s);
    }
}

void usb_init() {
    struct sigaction actions;
    memset(&actions, 0, sizeof(actions));
    sigemptyset(&actions.sa_mask);
    actions.sa_flags = 0;
    actions.sa_handler = [](int) {};
    sigaction(SIGALRM, &actions, nullptr);

    std::thread(device_poll_thread).detach();
}

void usb_cleanup() {}

} // namespace native