1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Backtracing functions for ARM.
*
* This implementation uses the exception unwinding tables provided by
* the compiler to unwind call frames. Refer to the ARM Exception Handling ABI
* documentation (EHABI) for more details about what's going on here.
*
* An ELF binary may contain an EXIDX section that provides an index to
* the exception handling table of each function, sorted by program
* counter address.
*
* This implementation also supports unwinding other processes via ptrace().
* In that case, the EXIDX section is found by reading the ELF section table
* structures using ptrace().
*
* Because the tables are used for exception handling, it can happen that
* a given function will not have an exception handling table. In particular,
* exceptions are assumed to only ever be thrown at call sites. Therefore,
* by definition leaf functions will not have exception handling tables.
* This may make unwinding impossible in some cases although we can still get
* some idea of the call stack by examining the PC and LR registers.
*
* As we are only interested in backtrace information, we do not need
* to perform all of the work of unwinding such as restoring register
* state and running cleanup functions. Unwinding is performed virtually on
* an abstract machine context consisting of just the ARM core registers.
* Furthermore, we do not run generic "personality functions" because
* we may not be in a position to execute arbitrary code, especially if
* we are running in a signal handler or using ptrace()!
*/
#define LOG_TAG "Corkscrew"
//#define LOG_NDEBUG 0
#include "../backtrace-arch.h"
#include "../backtrace-helper.h"
#include "../ptrace-arch.h"
#include <corkscrew/ptrace.h>
#include <stdlib.h>
#include <signal.h>
#include <stdbool.h>
#include <limits.h>
#include <errno.h>
#include <sys/ptrace.h>
#include <sys/exec_elf.h>
#include <cutils/log.h>
#if !defined(__BIONIC_HAVE_UCONTEXT_T)
/* Old versions of the Android <signal.h> didn't define ucontext_t. */
#include <asm/sigcontext.h> /* Ensure 'struct sigcontext' is defined. */
/* Machine context at the time a signal was raised. */
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
struct sigcontext uc_mcontext;
uint32_t uc_sigmask;
} ucontext_t;
#endif /* !__BIONIC_HAVE_UCONTEXT_T */
/* Unwind state. */
typedef struct {
uint32_t gregs[16];
} unwind_state_t;
static const int R_SP = 13;
static const int R_LR = 14;
static const int R_PC = 15;
/* Special EXIDX value that indicates that a frame cannot be unwound. */
static const uint32_t EXIDX_CANTUNWIND = 1;
/* Get the EXIDX section start and size for the module that contains a
* given program counter address.
*
* When the executable is statically linked, the EXIDX section can be
* accessed by querying the values of the __exidx_start and __exidx_end
* symbols.
*
* When the executable is dynamically linked, the linker exports a function
* called dl_unwind_find_exidx that obtains the EXIDX section for a given
* absolute program counter address.
*
* Bionic exports a helpful function called __gnu_Unwind_Find_exidx that
* handles both cases, so we use that here.
*/
typedef long unsigned int* _Unwind_Ptr;
extern _Unwind_Ptr __gnu_Unwind_Find_exidx(_Unwind_Ptr pc, int *pcount);
static uintptr_t find_exidx(uintptr_t pc, size_t* out_exidx_size) {
int count;
uintptr_t start = (uintptr_t)__gnu_Unwind_Find_exidx((_Unwind_Ptr)pc, &count);
*out_exidx_size = count;
return start;
}
/* Transforms a 31-bit place-relative offset to an absolute address.
* We assume the most significant bit is clear. */
static uintptr_t prel_to_absolute(uintptr_t place, uint32_t prel_offset) {
return place + (((int32_t)(prel_offset << 1)) >> 1);
}
static uintptr_t get_exception_handler(const memory_t* memory,
const map_info_t* map_info_list, uintptr_t pc) {
if (!pc) {
ALOGV("get_exception_handler: pc is zero, no handler");
return 0;
}
uintptr_t exidx_start;
size_t exidx_size;
const map_info_t* mi;
if (memory->tid < 0) {
mi = NULL;
exidx_start = find_exidx(pc, &exidx_size);
} else {
mi = find_map_info(map_info_list, pc);
if (mi && mi->data) {
const map_info_data_t* data = (const map_info_data_t*)mi->data;
exidx_start = data->exidx_start;
exidx_size = data->exidx_size;
} else {
exidx_start = 0;
exidx_size = 0;
}
}
uintptr_t handler = 0;
int32_t handler_index = -1;
if (exidx_start) {
uint32_t low = 0;
uint32_t high = exidx_size;
while (low < high) {
uint32_t index = (low + high) / 2;
uintptr_t entry = exidx_start + index * 8;
uint32_t entry_prel_pc;
ALOGV("XXX low=%u, high=%u, index=%u", low, high, index);
if (!try_get_word(memory, entry, &entry_prel_pc)) {
break;
}
uintptr_t entry_pc = prel_to_absolute(entry, entry_prel_pc);
ALOGV("XXX entry_pc=0x%08x", entry_pc);
if (pc < entry_pc) {
high = index;
continue;
}
if (index + 1 < exidx_size) {
uintptr_t next_entry = entry + 8;
uint32_t next_entry_prel_pc;
if (!try_get_word(memory, next_entry, &next_entry_prel_pc)) {
break;
}
uintptr_t next_entry_pc = prel_to_absolute(next_entry, next_entry_prel_pc);
ALOGV("XXX next_entry_pc=0x%08x", next_entry_pc);
if (pc >= next_entry_pc) {
low = index + 1;
continue;
}
}
uintptr_t entry_handler_ptr = entry + 4;
uint32_t entry_handler;
if (!try_get_word(memory, entry_handler_ptr, &entry_handler)) {
break;
}
if (entry_handler & (1L << 31)) {
handler = entry_handler_ptr; // in-place handler data
} else if (entry_handler != EXIDX_CANTUNWIND) {
handler = prel_to_absolute(entry_handler_ptr, entry_handler);
}
handler_index = index;
break;
}
}
if (mi) {
ALOGV("get_exception_handler: pc=0x%08x, module='%s', module_start=0x%08x, "
"exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
pc, mi->name, mi->start, exidx_start, exidx_size, handler, handler_index);
} else {
ALOGV("get_exception_handler: pc=0x%08x, "
"exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
pc, exidx_start, exidx_size, handler, handler_index);
}
return handler;
}
typedef struct {
uintptr_t ptr;
uint32_t word;
} byte_stream_t;
static bool try_next_byte(const memory_t* memory, byte_stream_t* stream, uint8_t* out_value) {
uint8_t result;
switch (stream->ptr & 3) {
case 0:
if (!try_get_word(memory, stream->ptr, &stream->word)) {
*out_value = 0;
return false;
}
*out_value = stream->word >> 24;
break;
case 1:
*out_value = stream->word >> 16;
break;
case 2:
*out_value = stream->word >> 8;
break;
default:
*out_value = stream->word;
break;
}
ALOGV("next_byte: ptr=0x%08x, value=0x%02x", stream->ptr, *out_value);
stream->ptr += 1;
return true;
}
static void set_reg(unwind_state_t* state, uint32_t reg, uint32_t value) {
ALOGV("set_reg: reg=%d, value=0x%08x", reg, value);
state->gregs[reg] = value;
}
static bool try_pop_registers(const memory_t* memory, unwind_state_t* state, uint32_t mask) {
uint32_t sp = state->gregs[R_SP];
bool sp_updated = false;
for (int i = 0; i < 16; i++) {
if (mask & (1 << i)) {
uint32_t value;
if (!try_get_word(memory, sp, &value)) {
return false;
}
if (i == R_SP) {
sp_updated = true;
}
set_reg(state, i, value);
sp += 4;
}
}
if (!sp_updated) {
set_reg(state, R_SP, sp);
}
return true;
}
/* Executes a built-in personality routine as defined in the EHABI.
* Returns true if unwinding should continue.
*
* The data for the built-in personality routines consists of a sequence
* of unwinding instructions, followed by a sequence of scope descriptors,
* each of which has a length and offset encoded using 16-bit or 32-bit
* values.
*
* We only care about the unwinding instructions. They specify the
* operations of an abstract machine whose purpose is to transform the
* virtual register state (including the stack pointer) such that
* the call frame is unwound and the PC register points to the call site.
*/
static bool execute_personality_routine(const memory_t* memory,
unwind_state_t* state, byte_stream_t* stream, int pr_index) {
size_t size;
switch (pr_index) {
case 0: // Personality routine #0, short frame, descriptors have 16-bit scope.
size = 3;
break;
case 1: // Personality routine #1, long frame, descriptors have 16-bit scope.
case 2: { // Personality routine #2, long frame, descriptors have 32-bit scope.
uint8_t size_byte;
if (!try_next_byte(memory, stream, &size_byte)) {
return false;
}
size = (uint32_t)size_byte * sizeof(uint32_t) + 2;
break;
}
default: // Unknown personality routine. Stop here.
return false;
}
bool pc_was_set = false;
while (size--) {
uint8_t op;
if (!try_next_byte(memory, stream, &op)) {
return false;
}
if ((op & 0xc0) == 0x00) {
// "vsp = vsp + (xxxxxx << 2) + 4"
set_reg(state, R_SP, state->gregs[R_SP] + ((op & 0x3f) << 2) + 4);
} else if ((op & 0xc0) == 0x40) {
// "vsp = vsp - (xxxxxx << 2) - 4"
set_reg(state, R_SP, state->gregs[R_SP] - ((op & 0x3f) << 2) - 4);
} else if ((op & 0xf0) == 0x80) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
uint32_t mask = (((uint32_t)op & 0x0f) << 12) | ((uint32_t)op2 << 4);
if (mask) {
// "Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}"
if (!try_pop_registers(memory, state, mask)) {
return false;
}
if (mask & (1 << R_PC)) {
pc_was_set = true;
}
} else {
// "Refuse to unwind"
return false;
}
} else if ((op & 0xf0) == 0x90) {
if (op != 0x9d && op != 0x9f) {
// "Set vsp = r[nnnn]"
set_reg(state, R_SP, state->gregs[op & 0x0f]);
} else {
// "Reserved as prefix for ARM register to register moves"
// "Reserved as prefix for Intel Wireless MMX register to register moves"
return false;
}
} else if ((op & 0xf8) == 0xa0) {
// "Pop r4-r[4+nnn]"
uint32_t mask = (0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0;
if (!try_pop_registers(memory, state, mask)) {
return false;
}
} else if ((op & 0xf8) == 0xa8) {
// "Pop r4-r[4+nnn], r14"
uint32_t mask = ((0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0) | 0x4000;
if (!try_pop_registers(memory, state, mask)) {
return false;
}
} else if (op == 0xb0) {
// "Finish"
break;
} else if (op == 0xb1) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
// "Pop integer registers under mask {r3, r2, r1, r0}"
if (!try_pop_registers(memory, state, op2)) {
return false;
}
} else {
// "Spare"
return false;
}
} else if (op == 0xb2) {
// "vsp = vsp + 0x204 + (uleb128 << 2)"
uint32_t value = 0;
uint32_t shift = 0;
uint8_t op2;
do {
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
value |= (op2 & 0x7f) << shift;
shift += 7;
} while (op2 & 0x80);
set_reg(state, R_SP, state->gregs[R_SP] + (value << 2) + 0x204);
} else if (op == 0xb3) {
// "Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 12);
} else if ((op & 0xf8) == 0xb8) {
// "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 12);
} else if ((op & 0xf8) == 0xc0) {
// "Intel Wireless MMX pop wR[10]-wR[10+nnn]"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
} else if (op == 0xc6) {
// "Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if (op == 0xc7) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
// "Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}"
set_reg(state, R_SP, state->gregs[R_SP] + __builtin_popcount(op2) * 4);
} else {
// "Spare"
return false;
}
} else if (op == 0xc8) {
// "Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc]
// saved (as if) by FSTMFD"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if (op == 0xc9) {
// "Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if ((op == 0xf8) == 0xd0) {
// "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
} else {
// "Spare"
return false;
}
}
if (!pc_was_set) {
set_reg(state, R_PC, state->gregs[R_LR]);
}
return true;
}
static bool try_get_half_word(const memory_t* memory, uint32_t pc, uint16_t* out_value) {
uint32_t word;
if (try_get_word(memory, pc & ~2, &word)) {
*out_value = pc & 2 ? word >> 16 : word & 0xffff;
return true;
}
return false;
}
uintptr_t rewind_pc_arch(const memory_t* memory, uintptr_t pc) {
if (pc & 1) {
/* Thumb mode - need to check whether the bl(x) has long offset or not.
* Examples:
*
* arm blx in the middle of thumb:
* 187ae: 2300 movs r3, #0
* 187b0: f7fe ee1c blx 173ec
* 187b4: 2c00 cmp r4, #0
*
* arm bl in the middle of thumb:
* 187d8: 1c20 adds r0, r4, #0
* 187da: f136 fd15 bl 14f208
* 187de: 2800 cmp r0, #0
*
* pure thumb:
* 18894: 189b adds r3, r3, r2
* 18896: 4798 blx r3
* 18898: b001 add sp, #4
*/
uint16_t prev1, prev2;
if (try_get_half_word(memory, pc - 5, &prev1)
&& ((prev1 & 0xf000) == 0xf000)
&& try_get_half_word(memory, pc - 3, &prev2)
&& ((prev2 & 0xe000) == 0xe000)) {
pc -= 4; // long offset
} else {
pc -= 2;
}
} else {
/* ARM mode, all instructions are 32bit. Yay! */
pc -= 4;
}
return pc;
}
static ssize_t unwind_backtrace_common(const memory_t* memory,
const map_info_t* map_info_list,
unwind_state_t* state, backtrace_frame_t* backtrace,
size_t ignore_depth, size_t max_depth) {
size_t ignored_frames = 0;
size_t returned_frames = 0;
for (size_t index = 0; returned_frames < max_depth; index++) {
uintptr_t pc = index ? rewind_pc_arch(memory, state->gregs[R_PC])
: state->gregs[R_PC];
backtrace_frame_t* frame = add_backtrace_entry(pc,
backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
if (frame) {
frame->stack_top = state->gregs[R_SP];
}
uintptr_t handler = get_exception_handler(memory, map_info_list, pc);
if (!handler) {
// If there is no handler for the PC and this is the first frame,
// then the program may have branched to an invalid address.
// Try starting from the LR instead, otherwise stop unwinding.
if (index == 0 && state->gregs[R_LR]
&& state->gregs[R_LR] != state->gregs[R_PC]) {
set_reg(state, R_PC, state->gregs[R_LR]);
continue;
} else {
break;
}
}
byte_stream_t stream;
stream.ptr = handler;
uint8_t pr;
if (!try_next_byte(memory, &stream, &pr)) {
break;
}
if ((pr & 0xf0) != 0x80) {
// The first word is a place-relative pointer to a generic personality
// routine function. We don't support invoking such functions, so stop here.
break;
}
// The first byte indicates the personality routine to execute.
// Following bytes provide instructions to the personality routine.
if (!execute_personality_routine(memory, state, &stream, pr & 0x0f)) {
break;
}
if (frame && state->gregs[R_SP] > frame->stack_top) {
frame->stack_size = state->gregs[R_SP] - frame->stack_top;
}
if (!state->gregs[R_PC]) {
break;
}
}
// Ran out of frames that we could unwind using handlers.
// Add a final entry for the LR if it looks sane and call it good.
if (returned_frames < max_depth
&& state->gregs[R_LR]
&& state->gregs[R_LR] != state->gregs[R_PC]
&& is_executable_map(map_info_list, state->gregs[R_LR])) {
// We don't know where the stack for this extra frame starts so we
// don't return any stack information for it.
add_backtrace_entry(rewind_pc_arch(memory, state->gregs[R_LR]),
backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
}
return returned_frames;
}
ssize_t unwind_backtrace_signal_arch(siginfo_t* siginfo, void* sigcontext,
const map_info_t* map_info_list,
backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
const ucontext_t* uc = (const ucontext_t*)sigcontext;
unwind_state_t state;
state.gregs[0] = uc->uc_mcontext.arm_r0;
state.gregs[1] = uc->uc_mcontext.arm_r1;
state.gregs[2] = uc->uc_mcontext.arm_r2;
state.gregs[3] = uc->uc_mcontext.arm_r3;
state.gregs[4] = uc->uc_mcontext.arm_r4;
state.gregs[5] = uc->uc_mcontext.arm_r5;
state.gregs[6] = uc->uc_mcontext.arm_r6;
state.gregs[7] = uc->uc_mcontext.arm_r7;
state.gregs[8] = uc->uc_mcontext.arm_r8;
state.gregs[9] = uc->uc_mcontext.arm_r9;
state.gregs[10] = uc->uc_mcontext.arm_r10;
state.gregs[11] = uc->uc_mcontext.arm_fp;
state.gregs[12] = uc->uc_mcontext.arm_ip;
state.gregs[13] = uc->uc_mcontext.arm_sp;
state.gregs[14] = uc->uc_mcontext.arm_lr;
state.gregs[15] = uc->uc_mcontext.arm_pc;
memory_t memory;
init_memory(&memory, map_info_list);
return unwind_backtrace_common(&memory, map_info_list, &state,
backtrace, ignore_depth, max_depth);
}
ssize_t unwind_backtrace_ptrace_arch(pid_t tid, const ptrace_context_t* context,
backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
struct pt_regs regs;
if (ptrace(PTRACE_GETREGS, tid, 0, ®s)) {
return -1;
}
unwind_state_t state;
for (int i = 0; i < 16; i++) {
state.gregs[i] = regs.uregs[i];
}
memory_t memory;
init_memory_ptrace(&memory, tid);
return unwind_backtrace_common(&memory, context->map_info_list, &state,
backtrace, ignore_depth, max_depth);
}
|