1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RecordReadThread.h"
#include <sys/resource.h>
#include <unistd.h>
#include <algorithm>
#include <unordered_map>
#include "environment.h"
#include "record.h"
namespace simpleperf {
static constexpr size_t kDefaultLowBufferLevel = 10 * 1024 * 1024u;
static constexpr size_t kDefaultCriticalBufferLevel = 5 * 1024 * 1024u;
RecordBuffer::RecordBuffer(size_t buffer_size)
: read_head_(0), write_head_(0), buffer_size_(buffer_size), buffer_(new char[buffer_size]) {
}
size_t RecordBuffer::GetFreeSize() const {
size_t write_head = write_head_.load(std::memory_order_relaxed);
size_t read_head = read_head_.load(std::memory_order_relaxed);
size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
if (write_head <= write_tail) {
return write_tail - write_head;
}
return buffer_size_ - write_head + write_tail;
}
char* RecordBuffer::AllocWriteSpace(size_t record_size) {
size_t write_head = write_head_.load(std::memory_order_relaxed);
size_t read_head = read_head_.load(std::memory_order_acquire);
size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
cur_write_record_size_ = record_size;
if (write_head < write_tail) {
if (write_head + record_size > write_tail) {
return nullptr;
}
} else if (write_head + record_size > buffer_size_) {
// Not enough space at the end of the buffer, need to wrap to the start of the buffer.
if (write_tail < record_size) {
return nullptr;
}
if (buffer_size_ - write_head >= sizeof(perf_event_header)) {
// Set the size field in perf_event_header to 0. So GetCurrentRecord() can wrap to the start
// of the buffer when size is 0.
memset(buffer_.get() + write_head, 0, sizeof(perf_event_header));
}
cur_write_record_size_ += buffer_size_ - write_head;
write_head = 0;
}
return buffer_.get() + write_head;
}
void RecordBuffer::FinishWrite() {
size_t write_head = write_head_.load(std::memory_order_relaxed);
write_head = (write_head + cur_write_record_size_) % buffer_size_;
write_head_.store(write_head, std::memory_order_release);
}
char* RecordBuffer::GetCurrentRecord() {
size_t write_head = write_head_.load(std::memory_order_acquire);
size_t read_head = read_head_.load(std::memory_order_relaxed);
if (read_head == write_head) {
return nullptr;
}
perf_event_header header;
if (read_head > write_head) {
if (buffer_size_ - read_head < sizeof(header) ||
(memcpy(&header, buffer_.get() + read_head, sizeof(header)) && header.size == 0)) {
// Need to wrap to the start of the buffer.
cur_read_record_size_ += buffer_size_ - read_head;
read_head = 0;
memcpy(&header, buffer_.get(), sizeof(header));
}
} else {
memcpy(&header, buffer_.get() + read_head, sizeof(header));
}
cur_read_record_size_ += header.size;
return buffer_.get() + read_head;
}
void RecordBuffer::MoveToNextRecord() {
size_t read_head = read_head_.load(std::memory_order_relaxed);
read_head = (read_head + cur_read_record_size_) % buffer_size_;
read_head_.store(read_head, std::memory_order_release);
cur_read_record_size_ = 0;
}
RecordParser::RecordParser(const perf_event_attr& attr)
: sample_type_(attr.sample_type),
sample_regs_count_(__builtin_popcountll(attr.sample_regs_user)) {
size_t pos = sizeof(perf_event_header);
uint64_t mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_IP | PERF_SAMPLE_TID;
pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
if (sample_type_ & PERF_SAMPLE_TIME) {
time_pos_in_sample_records_ = pos;
pos += sizeof(uint64_t);
}
mask = PERF_SAMPLE_ADDR | PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU |
PERF_SAMPLE_PERIOD;
pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
callchain_pos_in_sample_records_ = pos;
if ((sample_type_ & PERF_SAMPLE_TIME) && attr.sample_id_all) {
mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_ID;
time_rpos_in_non_sample_records_ = (__builtin_popcountll(sample_type_ & mask) + 1) *
sizeof(uint64_t);
}
}
size_t RecordParser::GetTimePos(const perf_event_header& header) const {
if (header.type == PERF_RECORD_SAMPLE) {
return time_pos_in_sample_records_;
}
if (time_rpos_in_non_sample_records_ != 0u &&
time_rpos_in_non_sample_records_ < header.size - sizeof(perf_event_header)) {
return header.size - time_rpos_in_non_sample_records_;
}
return 0;
}
size_t RecordParser::GetStackSizePos(
const std::function<void(size_t,size_t,void*)>& read_record_fn) const{
size_t pos = callchain_pos_in_sample_records_;
if (sample_type_ & PERF_SAMPLE_CALLCHAIN) {
uint64_t ip_nr;
read_record_fn(pos, sizeof(ip_nr), &ip_nr);
pos += (ip_nr + 1) * sizeof(uint64_t);
}
if (sample_type_ & PERF_SAMPLE_RAW) {
uint32_t size;
read_record_fn(pos, sizeof(size), &size);
pos += size + sizeof(uint32_t);
}
if (sample_type_ & PERF_SAMPLE_BRANCH_STACK) {
uint64_t stack_nr;
read_record_fn(pos, sizeof(stack_nr), &stack_nr);
pos += sizeof(uint64_t) + stack_nr * sizeof(BranchStackItemType);
}
if (sample_type_ & PERF_SAMPLE_REGS_USER) {
uint64_t abi;
read_record_fn(pos, sizeof(abi), &abi);
pos += (1 + (abi == 0 ? 0 : sample_regs_count_)) * sizeof(uint64_t);
}
return (sample_type_ & PERF_SAMPLE_STACK_USER) ? pos : 0;
}
KernelRecordReader::KernelRecordReader(EventFd* event_fd) : event_fd_(event_fd) {
size_t buffer_size;
buffer_ = event_fd_->GetMappedBuffer(buffer_size);
buffer_mask_ = buffer_size - 1;
}
bool KernelRecordReader::GetDataFromKernelBuffer() {
data_size_ = event_fd_->GetAvailableMmapDataSize(data_pos_);
if (data_size_ == 0) {
return false;
}
init_data_size_ = data_size_;
record_header_.size = 0;
return true;
}
void KernelRecordReader::ReadRecord(size_t pos, size_t size, void* dest) {
pos = (pos + data_pos_) & buffer_mask_;
size_t copy_size = std::min(size, buffer_mask_ + 1 - pos);
memcpy(dest, buffer_ + pos, copy_size);
if (copy_size < size) {
memcpy(static_cast<char*>(dest) + copy_size, buffer_, size - copy_size);
}
}
bool KernelRecordReader::MoveToNextRecord(const RecordParser& parser) {
data_pos_ = (data_pos_ + record_header_.size) & buffer_mask_;
data_size_ -= record_header_.size;
if (data_size_ == 0) {
event_fd_->DiscardMmapData(init_data_size_);
init_data_size_ = 0;
return false;
}
ReadRecord(0, sizeof(record_header_), &record_header_);
size_t time_pos = parser.GetTimePos(record_header_);
if (time_pos != 0) {
ReadRecord(time_pos, sizeof(record_time_), &record_time_);
}
return true;
}
RecordReadThread::RecordReadThread(size_t record_buffer_size, const perf_event_attr& attr,
size_t min_mmap_pages, size_t max_mmap_pages)
: record_buffer_(record_buffer_size), record_parser_(attr), attr_(attr),
min_mmap_pages_(min_mmap_pages), max_mmap_pages_(max_mmap_pages) {
if (attr.sample_type & PERF_SAMPLE_STACK_USER) {
stack_size_in_sample_record_ = attr.sample_stack_user;
}
record_buffer_low_level_ = std::min(record_buffer_size / 4, kDefaultLowBufferLevel);
record_buffer_critical_level_ = std::min(record_buffer_size / 6, kDefaultCriticalBufferLevel);
}
RecordReadThread::~RecordReadThread() {
if (read_thread_) {
StopReadThread();
}
}
bool RecordReadThread::RegisterDataCallback(IOEventLoop& loop,
const std::function<bool()>& data_callback) {
int cmd_fd[2];
int data_fd[2];
if (pipe2(cmd_fd, O_CLOEXEC) != 0 || pipe2(data_fd, O_CLOEXEC) != 0) {
PLOG(ERROR) << "pipe2";
return false;
}
read_cmd_fd_.reset(cmd_fd[0]);
write_cmd_fd_.reset(cmd_fd[1]);
cmd_ = NO_CMD;
read_data_fd_.reset(data_fd[0]);
write_data_fd_.reset(data_fd[1]);
has_data_notification_ = false;
if (!loop.AddReadEvent(read_data_fd_, data_callback)) {
return false;
}
read_thread_.reset(new std::thread([&]() { RunReadThread(); }));
return true;
}
bool RecordReadThread::AddEventFds(const std::vector<EventFd*>& event_fds) {
return SendCmdToReadThread(CMD_ADD_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
}
bool RecordReadThread::RemoveEventFds(const std::vector<EventFd*>& event_fds) {
return SendCmdToReadThread(CMD_REMOVE_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
}
bool RecordReadThread::SyncKernelBuffer() {
return SendCmdToReadThread(CMD_SYNC_KERNEL_BUFFER, nullptr);
}
bool RecordReadThread::StopReadThread() {
bool result = SendCmdToReadThread(CMD_STOP_THREAD, nullptr);
if (result) {
read_thread_->join();
read_thread_ = nullptr;
}
return result;
}
bool RecordReadThread::SendCmdToReadThread(Cmd cmd, void* cmd_arg) {
{
std::lock_guard<std::mutex> lock(cmd_mutex_);
cmd_ = cmd;
cmd_arg_ = cmd_arg;
}
char dummy = 0;
if (TEMP_FAILURE_RETRY(write(write_cmd_fd_, &dummy, 1)) != 1) {
return false;
}
std::unique_lock<std::mutex> lock(cmd_mutex_);
while (cmd_ != NO_CMD) {
cmd_finish_cond_.wait(lock);
}
return cmd_result_;
}
std::unique_ptr<Record> RecordReadThread::GetRecord() {
record_buffer_.MoveToNextRecord();
char* p = record_buffer_.GetCurrentRecord();
if (p != nullptr) {
return ReadRecordFromBuffer(attr_, p);
}
if (has_data_notification_) {
char dummy;
TEMP_FAILURE_RETRY(read(read_data_fd_, &dummy, 1));
has_data_notification_ = false;
}
return nullptr;
}
void RecordReadThread::RunReadThread() {
IncreaseThreadPriority();
IOEventLoop loop;
CHECK(loop.AddReadEvent(read_cmd_fd_, [&]() { return HandleCmd(loop); }));
loop.RunLoop();
}
void RecordReadThread::IncreaseThreadPriority() {
// TODO: use real time priority for root.
rlimit rlim;
int result = getrlimit(RLIMIT_NICE, &rlim);
if (result == 0 && rlim.rlim_cur == 40) {
result = setpriority(PRIO_PROCESS, gettid(), -20);
if (result == 0) {
LOG(VERBOSE) << "Priority of record read thread is increased";
}
}
}
RecordReadThread::Cmd RecordReadThread::GetCmd() {
std::lock_guard<std::mutex> lock(cmd_mutex_);
return cmd_;
}
bool RecordReadThread::HandleCmd(IOEventLoop& loop) {
char dummy;
TEMP_FAILURE_RETRY(read(read_cmd_fd_, &dummy, 1));
bool result = true;
switch (GetCmd()) {
case CMD_ADD_EVENT_FDS:
result = HandleAddEventFds(loop, *static_cast<std::vector<EventFd*>*>(cmd_arg_));
break;
case CMD_REMOVE_EVENT_FDS:
result = HandleRemoveEventFds(*static_cast<std::vector<EventFd*>*>(cmd_arg_));
break;
case CMD_SYNC_KERNEL_BUFFER:
result = ReadRecordsFromKernelBuffer();
break;
case CMD_STOP_THREAD:
result = loop.ExitLoop();
break;
default:
LOG(ERROR) << "Unknown cmd: " << GetCmd();
result = false;
break;
}
std::lock_guard<std::mutex> lock(cmd_mutex_);
cmd_ = NO_CMD;
cmd_result_ = result;
cmd_finish_cond_.notify_one();
return true;
}
bool RecordReadThread::HandleAddEventFds(IOEventLoop& loop,
const std::vector<EventFd*>& event_fds) {
std::unordered_map<int, EventFd*> cpu_map;
for (size_t pages = max_mmap_pages_; pages >= min_mmap_pages_; pages >>= 1) {
bool success = true;
for (EventFd* fd : event_fds) {
auto it = cpu_map.find(fd->Cpu());
if (it == cpu_map.end()) {
if (!fd->CreateMappedBuffer(pages, pages == min_mmap_pages_)) {
success = false;
break;
}
cpu_map[fd->Cpu()] = fd;
} else {
if (!fd->ShareMappedBuffer(*(it->second), pages == min_mmap_pages_)) {
success = false;
break;
}
}
}
if (success) {
LOG(VERBOSE) << "Each kernel buffer is " << pages << " pages.";
break;
}
for (auto& pair : cpu_map) {
pair.second->DestroyMappedBuffer();
}
cpu_map.clear();
}
if (cpu_map.empty()) {
return false;
}
for (auto& pair : cpu_map) {
if (!pair.second->StartPolling(loop, [this]() { return ReadRecordsFromKernelBuffer(); })) {
return false;
}
kernel_record_readers_.emplace_back(pair.second);
}
return true;
}
bool RecordReadThread::HandleRemoveEventFds(const std::vector<EventFd*>& event_fds) {
for (auto& event_fd : event_fds) {
if (event_fd->HasMappedBuffer()) {
auto it = std::find_if(kernel_record_readers_.begin(), kernel_record_readers_.end(),
[&](const KernelRecordReader& reader) {
return reader.GetEventFd() == event_fd;
});
if (it != kernel_record_readers_.end()) {
kernel_record_readers_.erase(it);
event_fd->StopPolling();
event_fd->DestroyMappedBuffer();
}
}
}
return true;
}
static bool CompareRecordTime(KernelRecordReader* r1, KernelRecordReader* r2) {
return r1->RecordTime() > r2->RecordTime();
}
// When reading from mmap buffers, we prefer reading from all buffers at once rather than reading
// one buffer at a time. Because by reading all buffers at once, we can merge records from
// different buffers easily in memory. Otherwise, we have to sort records with greater effort.
bool RecordReadThread::ReadRecordsFromKernelBuffer() {
do {
std::vector<KernelRecordReader*> readers;
for (auto& reader : kernel_record_readers_) {
if (reader.GetDataFromKernelBuffer()) {
readers.push_back(&reader);
}
}
if (readers.empty()) {
break;
}
if (readers.size() == 1u) {
// Only one buffer has data, process it directly.
while (readers[0]->MoveToNextRecord(record_parser_)) {
PushRecordToRecordBuffer(readers[0]);
}
} else {
// Use a binary heap to merge records from different buffers. As records from the same buffer
// are already ordered by time, we only need to merge the first record from all buffers. And
// each time a record is popped from the heap, we put the next record from its buffer into
// the heap.
for (auto& reader : readers) {
reader->MoveToNextRecord(record_parser_);
}
std::make_heap(readers.begin(), readers.end(), CompareRecordTime);
size_t size = readers.size();
while (size > 0) {
std::pop_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
PushRecordToRecordBuffer(readers[size - 1]);
if (readers[size - 1]->MoveToNextRecord(record_parser_)) {
std::push_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
} else {
size--;
}
}
}
if (!SendDataNotificationToMainThread()) {
return false;
}
// If there are no commands, we can loop until there is no more data from the kernel.
} while (GetCmd() == NO_CMD);
return true;
}
void RecordReadThread::PushRecordToRecordBuffer(KernelRecordReader* kernel_record_reader) {
const perf_event_header& header = kernel_record_reader->RecordHeader();
if (header.type == PERF_RECORD_SAMPLE && stack_size_in_sample_record_ > 1024) {
size_t free_size = record_buffer_.GetFreeSize();
if (free_size < record_buffer_critical_level_) {
// When the free size in record buffer is below critical level, drop sample records to save
// space for more important records (like mmap or fork records).
lost_samples_++;
return;
}
size_t stack_size_limit = stack_size_in_sample_record_;
if (free_size < record_buffer_low_level_) {
// When the free size in record buffer is below low level, cut the stack data in sample
// records to 1K. This makes the unwinder unwind only part of the callchains, but hopefully
// the call chain joiner can complete the callchains.
stack_size_limit = 1024;
}
size_t stack_size_pos = record_parser_.GetStackSizePos(
[&](size_t pos, size_t size, void* dest) {
return kernel_record_reader->ReadRecord(pos, size, dest);
});
uint64_t stack_size;
kernel_record_reader->ReadRecord(stack_size_pos, sizeof(stack_size), &stack_size);
if (stack_size > 0) {
size_t dyn_stack_size_pos = stack_size_pos + sizeof(stack_size) + stack_size;
uint64_t dyn_stack_size;
kernel_record_reader->ReadRecord(dyn_stack_size_pos, sizeof(dyn_stack_size), &dyn_stack_size);
if (dyn_stack_size == 0) {
// If stack_user_data.dyn_size == 0, it may be because the kernel misses the patch to
// update dyn_size, like in N9 (See b/22612370). So assume all stack data is valid if
// dyn_size == 0.
// TODO: Add cts test.
dyn_stack_size = stack_size;
}
// When simpleperf requests the kernel to dump 64K stack per sample, it will allocate 64K
// space in each sample to store stack data. However, a thread may use less stack than 64K.
// So not all the 64K stack data in a sample is valid, and we only need to keep valid stack
// data, whose size is dyn_stack_size.
uint64_t new_stack_size = std::min<uint64_t>(dyn_stack_size, stack_size_limit);
if (stack_size > new_stack_size) {
// Remove part of the stack data.
perf_event_header new_header = header;
new_header.size -= stack_size - new_stack_size;
char* p = record_buffer_.AllocWriteSpace(new_header.size);
if (p != nullptr) {
memcpy(p, &new_header, sizeof(new_header));
size_t pos = sizeof(new_header);
kernel_record_reader->ReadRecord(pos, stack_size_pos - pos, p + pos);
memcpy(p + stack_size_pos, &new_stack_size, sizeof(uint64_t));
pos = stack_size_pos + sizeof(uint64_t);
kernel_record_reader->ReadRecord(pos, new_stack_size, p + pos);
memcpy(p + pos + new_stack_size, &new_stack_size, sizeof(uint64_t));
record_buffer_.FinishWrite();
if (new_stack_size < dyn_stack_size) {
cut_stack_samples_++;
}
} else {
lost_samples_++;
}
return;
}
}
}
char* p = record_buffer_.AllocWriteSpace(header.size);
if (p != nullptr) {
kernel_record_reader->ReadRecord(0, header.size, p);
record_buffer_.FinishWrite();
} else {
if (header.type == PERF_RECORD_SAMPLE) {
lost_samples_++;
} else {
lost_non_samples_++;
}
}
}
bool RecordReadThread::SendDataNotificationToMainThread() {
if (!has_data_notification_.load(std::memory_order_relaxed)) {
has_data_notification_ = true;
char dummy = 0;
if (TEMP_FAILURE_RETRY(write(write_data_fd_, &dummy, 1)) != 1) {
PLOG(ERROR) << "write";
return false;
}
}
return true;
}
} // namespace simpleperf
|